EE530 - 2.sem 2017 Tutorial para a Lista 02- Orcad

Este tutorial simplificado foi elaborado para auxiliar os alunos que utilizam o Orcad Lite 17.2, para a simulação dos ítens 5.1 e 5.2 da Lista 02, da disciplina EE530.

1. Primeiros Passos.

Após a instalação do software iremos criar um projeto, para tanto, devemos selecionar na janela principal "**New Project**".

Será aberta uma janela onde atribuiremos: **Nome do projeto**, selecionaremos **"PSpice Analog or Mixed A/D"** e com o botão Browser indicaremos a **pasta em que o projeto será armazenado** (para salvar os projetos, indicamos criar uma pasta na unidade C, do computador.)

Na janela seguinte, selecionamos o **"Create a blank project",** e em seguida, será aberto nossa janela para elaboração de esquemáticos dos circuitos.

Para colocar cada componentes, na tela do esquemático, devemos seguir a Figura 1.1. Primeiramente, clicamos "Place Part", em(1), adiciomamos ao projeto a biblioteca desejada, (2) e selecionamento o componente desejado.

Figura 01- Seleção de componentes.

Assim, podemos clicar sobre o componente especificado em "Part" e arrastá-lo para o local desejado.

Para a realização da conexão dos componentes , usamos o atalho "W", referente a wire, (o cursor irá se tornar em forma de cruz), clicamos sobre cada conexão e juntamos os componentes conforme o desejado.

Salientamos, que o software é repleto de redundâncias, assim, podemos encontrar componentes tanto pelo caminho indicado, ou pelo menu Place ou até mesmo pelo atalho "P".

Para rotacionar componentes Crtl+R.

Impressão das formas de ondas simuladas:

Adiante, explicaremos como obter as formas de onda para a simulação. Após simuladas devemos seguir : **File -> Print Preview -> imprimir**

2. Questão 05:

Para facilitar a visualização os diferentes comportamentos da curva característica do diodo, conforme a variação dos parâmetros indicados nos ítens A e B, podemos construir o seguinte esquemático:

Figura 02 - Esquemático proposto para a questão 5.1

Encontramos os componentes nas seguintes bibliotecas, conforme tabela 01

Componente	Nome	Biblioteca
V1	VDC (fonte de tensão DC)	SOURCE
D1, D2, D3	Dbreak (diodo sem especificação comercial)	BREAKOUT
GND	0/CAPSYM [ou pelo atalho "G"]	CAPSYM

Tabela 01 - Relação entre componentes e bibliotecas.

Para alterar os parâmetros de cada diodo, selecionamos o diodo interessado, clicamos com o botão direito do mouse e escolhemos "*Edit PSpice Model*"

Será aberta uma janela onde iremos inserir os parâmetros descritos no enunciado, conforme a Figura 03. O diodo com estas especificações será nosso referencial e a partir dele alteraremos as condições solicitadas na questão.

Figura 03 - Janela de edição do modelo PSpice para Diodos. A cada passo, salvamos o arquivo.

Conforme o esquemático, não devemos especificar valor à fonte VDC pois ela será o parâmetro de variação de nossa simulação, conforme indica a Figura 04.

Para simular o circuito, criaremos um profile de simulação, para tanto, do **menu superior:**

PSpice -> New Simulation Profile

Iremos inserir um **nome** para o arquivo de simulação, e clicamos em **Create.** Será aberta uma janela com, onde iremos selecionar o tipo de análise, cujos parâmetros serão:

eneral Analysis	Configuration Files	Options	Data Collectio	n Probe	Window	
Analysis type: DC Sweep Dptions: Primary Sweep Secondary Swee Monte Carlo/Wo Parametric Swee Temperature (Sw Save Bias Point Load Bias Point	P P P P P P P P P P P P P P	o variable ioltage so urrent sou lobal para lodel para emperatu o type inear inear inear 'alue list	urce Nam urce Mod ameter Mod re Para	ie: lel type: lel name: ameter name Start val End valu Increme	V1 ue: 0 ue: 1.5 nt: 0.01	

Figura 04 - Especificações dos parâmetros de simulação.

Clicamos em "Aplicar" e "OK". A janela fechará, e nosso circuito estará pronto para a simulação.

Para simular clicamos em Run PSpice - menu superior

Automaticamente, o **PSpice A/D Lite** será aberto e poderemos selecionar o parâmetro desejado no botão: *Add Trace* (menu superior).

Temos interesse na corrente que fui por cada diodo, então, em Add Trace, selecionamos: : **I(D1), I(D2) e I(D3).**

Obteremos as formas de onda especificadas na Figura 04.

Figura 05 - Formas de ondas resultantes - Em escala linear

Como o enunciado pede para alterarmos para escala semi-logaritmica, iremos alterar o eixo y, conforme os passos das figuras a seguir:

Figura 06 - Passo 01:Plot -> Axis Settings

User Defined 10uA to 800mA	Axis Position Left Right
Scale O Linear O Log	Axis Title

Figura 07 - Passo 02: Configurar parâmetros conforme o indicado, definindo a excursão do sinal conforme o desejado.

Figura 08- Passo 03: Forma de onda resultante.

Agora já podemos analisar cada forma de onda, e replicar o raciocínio para a questão 5.2! Bom trabalho!