#### CAPACITOR M.O.S. (METAL-OXIDO-SEMICONDUTOR).

## 1. INTRODUÇÃO.

A estrutura de um capacitor MOS apresenta três interfaces: metal-óxido, óxidosemicondutor e semicondutor-metal, como ilustra a Figura. 1(a). A Figura.1(b) apresenta o diagrama de faixas (ou bandas) de energia de um capacitor MOS ideal em equilíbrio termodinâmico. Um capacitor é considerado ideal quando: não há presença de cargas no óxido ou na interface Si/SiO<sub>2</sub>, as funções trabalho do semicondutor e do metal são idênticas, e a distribuição de dopantes no substrato (semicondutor) é uniforme.



Figura.1(a)Estrutura de um capacitor MOS, com substrato de Si tipo-p.



onde:

 $E_c$  - energia do limite inferior da banda de condução;  $E_{FS}$  - energia do nível de Fermi no semicondutor tipo-p;  $E_{FM}$  - energia do nível de Fermi no metal;  $E_v$  - energia do limite superior da banda de valência;  $E_i$ - energia do nível de Fermi no semicondutor intrínseco;  $E_g=E_c-E_v$  - magnitude da energia da banda proibida;  $E_{vac}$  - energia de referência no nível de vácuo;  $\phi_M$  - função trabalho do metal;  $\phi_S$  - função trabalho do semicondutor;  $\chi_s$  - afinidade eletrônica do semicondutor;  $\chi_{ox}$  - afinidade eletrônica do óxido;  $\psi_S$  - potencial de superfície do semicondutor;  $\psi_f=(E_i-E_{FS})/q$  - potencial de Fermi.

Figura.1(b)Diagrama de bandas de energia de um capacitor MOS ideal, com substrato tipo-p [9].

Um capacitor MOS é fabricado da seguinte forma: sobre uma lâmina (substrato) semicondutora é depositada ou crescida (oxidação térmica) uma camada fina de material isolante (óxido). Utilizando-se material condutor (metal), são formados dois eletrodos: o primeiro sobre a camada de óxido (denominado eletrodo superior) e o segundo sob a lâmina (denominado eletrodo do substrato), como ilustra a Figura.1(a).

Basicamente, os dispositivos com estrutura metal-óxido-semicondutor (MOS), quando polarizados por um sinal de tensão elétrica aplicado entre seus eletrodos, operam sob o efeito do campo elétrico resultante na superfície do semicondutor. Em 1926, Lilienfeld [1] apresentou o primeiro estudo sobre estes dispositivos. Em 1935, Heil [2] sugeriu que dispositivos amplificadores de estado sólido poderiam ser obtidos, utilizando-se este efeito de campo. Shockley [3] demonstrou experimentalmente o efeito da modulação da condutância em semicondutores através da aplicação de campos elétricos em filmes finos de semicondutores.

A partir de 1957, a tecnologia planar revolucionou a fabricação dos dispositivos semicondutores. Esta tecnologia foi desenvolvida pela primeira vez por Frosch e Derrick [4], que utilizaram filmes de dióxido de silício (SiO<sub>2</sub>) como camada de proteção e também como máscara para etapas de processo de difusão. Mas esta tecnologia só foi concretizada em 1960 por Hoerni [5], que obteve diodos e transistores planares de silício.

A partir de 1960, com o processo de oxidação térmica, Khang e Atalla [6] obtiveram uma camada de dióxido de silício de boa qualidade crescida termicamente e produziram o primeiro transistor MOS. Baseando-se neste trabalho, o transistor MOS foi aperfeiçoado por Hofstein e Heiman [7] em 1963 e a sua fabricação foi iniciada imediatamente. No entanto, estes transistores apresentaram variações nas características elétricas devido ao deslocamento de cargas no óxido de porta sob condições de elevado campo elétrico e alta temperatura, obrigando a paralisação da produção pouco depois.

A partir de 1965, compreendeu-se a causa da instabilidade dos dispositivos M.O.S., com a publicação do primeiro trabalho sobre contaminação do óxido por íons sódio  $(Na^+)$  [8]. Demonstrou-se que as cargas contaminantes do dióxido de silício eram íons móveis, principalmente íons de sódio de carga positiva. Algumas soluções para a redução da contaminação foram propostas [11,12]:

i) a utilização de óxido de silício de porta dopado com fósforo - esta técnica permite diminuir bastante a mobilidade dos íons móveis, mas causa polarização do óxido, que não diminui as variações na característica elétrica;

ii) a incorporação de cloro ao óxido de silício de porta - esta técnica permite a fixação dos íons móveis, sendo bastante utilizada em processos de oxidação térmica em temperaturas >  $1000^{0}$ C;

iii) a utilização do nitreto de silício  $(Si_3N_4)$  ou óxido de silício nitretado como dielétrico de porta - os filmes de  $Si_3N_4$  permitem que a mobilidade dos íons móveis seja extremamente reduzida, mas as etapas de obtenção dos filmes por CVD, RTP ou nitretação térmica do óxido de silício convencional envolvem tecnologia complexa e problemas com a integridade do filme pela eventual incorporação de hidrogênio.

Atualmente, a tecnologia MOS. proporciona a fabricação de dispositivos de alta qualidade com dimensões submicrométricas e baixo consumo de potência. Isto é devido ao melhor controle da contaminação e da geração de partículas nos ambientes de processo, e às etapas de limpeza mais eficientes, que proporcionam uma melhor estabilidade das propriedades da interface SiO<sub>2</sub>/Si. Além disso, o grupo de dispositivos com estrutura MOS vem aumentando consideravelmente com o uso de outros materiais semicondutores como o germânio e os semicondutores do grupo III-V (arseneto de gálio (GaAs) e fosfeto de índio (InP), por exemplo) e de outros filmes dielétricos como o nitreto de silício (Si<sub>3</sub>N<sub>4</sub>), a alumina (Al<sub>2</sub>O<sub>3</sub>), o oxinitreto de silício (SiO<sub>x</sub>N<sub>y</sub>) ou a intercalação de camadas dielétrica (Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> ou SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub>).

## 2 - CAPACITOR MOS [9]: CARACTERÍSTICA C-V.

Na Figura.2 apresenta-se um esboço das curvas C-V de um capacitor MOS ideal, com substrato tipo p (a) e n (b), obtidas pela aplicação de uma tensão positiva e negativa entre os eletrodos [9].



## Figura.2 (a)Esboço de uma curva C-V de um capacitor MOS ideal, com substrato tipo-p; (b)Esboço de uma curva C-V de um capacitor MOS ideal, com substrato do tipo-n.

Para uma análise qualitativa das características C-V de um capacitor MOS ideal é necessário definir seis diferentes situações de polarização em função de  $\psi$ f e  $\psi$ s, sendo V<sub>G</sub> a tensão no eletrodo superior em relação ao eletrodo do substrato (aterrado). O potencial de superfície do semicondutor  $\psi$ s é função de V<sub>G</sub> e está relacionado com o encurvamento das bandas de energia. Considera-se nesta descrição que o substrato é do tipo-p. Para o substrato do tipo-n a descrição é semelhante. Na superfície do semicondutor podem ocorrer seis situações:

1) $V_G \ll 0 - \psi \ll 0$  - acumulação de portadores majoritários (lacunas);

2) $V_G=0$  -  $\psi s=0$  - condição de banda plana (não há encurvamento das bandas de energia);

3) $V_G>0$  -  $\psi f>\psi s>0$  - formação da camada de depleção de lacunas (portadores majoritários);

4) $V_G >> 0$  -  $\psi s = \psi f$  - condição de superfície intrínseca, ou seja, superfície do semicondutor com concentração de portadores majoritários (lacunas) igual a de minoritários (elétrons);

**5**) $V_G$ >>>0 - 2 $\psi$ f> $\psi$ s> $\psi$ f - condição de inversão fraca - concentração de portadores minoritários (elétrons) maior que a de majoritários (lacunas);

**6**) $V_G$ >>>0 -  $\psi$ s>2 $\psi$ f - condição de inversão forte - concentração de elétrons muito maior que a de lacunas;

As características C-V (Figs.2 (a) e (b)) podem ser divididas em três regiões:

(i) Região de acumulação: aplicando-se uma tensão negativa na eletrodo superior (V<sub>G</sub> << 0), as lacunas, que são os portadores majoritários (substrato tipo-p), são atraídas à superfície do substrato (interface óxido/semicondutor). A concentração de lacunas aumenta na superfície do silício, formando-se uma região de acumulação de portadores majoritários. O nível de energia de Fermi (E<sub>FS</sub>) aproxima-se da banda de valência. Como este nível mantém-se constante em equilíbrio térmico, há um encurvamento das bandas de energia de valência (E<sub>v</sub>) e condução (E<sub>c</sub>) (Figura.3(b)). A camada de acumulação, para uma concentração alta de portadores majoritários, pode ser considerada como o segundo eletrodo de um capacitor de placas paralelas, pois o primeiro é o eletrodo superior, resultando em um campo elétrico Ep =  $-V_G/t_{ox}$  no óxido, como ilustra a Figura.3(a). Em condição de acumulação forte, desde que ocorra um contato ôhmico direto entre o substrato tipo-p e a região de acumulação das lacunas, a capacitância da estrutura MOS é máxima e aproximadamente igual a capacitância no óxido, que é:

$$C_{\max} = C_{ox} = (\varepsilon_o \cdot \varepsilon_{ox} \cdot A)/t_{ox}$$
(1),

onde:

- $C_{ox}$  capacitância no óxido;  $\varepsilon_o$  permitividade no vácuo;  $\varepsilon_{ox}$  permitividade do óxido; tox espessura do óxido;
- A área do eletrodo superior.





Diminuindo-se a tensão negativa no eletrodo superior ( $V_G < 0$ ), a camada de acumulação de portadores majoritários é reduzida, pois o campo elétrico no óxido fica menos intenso. Diminuindo-se ainda mais a tensão na eletrodo superior para  $V_G=0$ , a camada de acumulação é extinta, tornando as concentrações de portadores na superfície semelhante as do corpo do substrato. Nesta condição não há encurvamento das bandas de energia (condição de banda plana - "flat band"- Figs.4(a) e (b)) e a tensão aplicada no eletrodo superior é denominada tensão de banda plana ( $V_{fb}$ ), sendo  $C_{fb}$  a capacitância de banda plana correspondente. Para o capacitor MOS ideal, a tensão  $V_{fb}$  é nula.



Figura.4(a)- Esquematização da condição de banda plana no capacitor; (b) Diagrama de bandas de energia na estrutura MOS - não há encurvamento das bandas de energia.

(ii) Região de depleção: para uma tensão no eletrodo superior maior que a tensão de banda plana ( $V_G > V_{fb}$ ), ocorre um deslocamento dos portadores majoritários (lacunas) da superfície do substrato, expondo os íons das impurezas aceitadoras (cargas negativas). Assim, forma-se uma região de depleção de portadores na superfície, com largura  $W_d$ , constituída pelos íons aceitadores, que compensa o campo elétrico aplicado (Figura.5(a)). Na condição de depleção, ocorre a aproximação do nível de Fermi em direção ao meio da banda proibida do semicondutor e o encurvamento de bandas, como é esquematizado na Figura.5(b).

Ressalta-se que a largura  $W_d$  é proporcional ao potencial de superfície  $\psi$ s (V<sub>G</sub>), que está relacionado com o encurvamento das bandas, ou seja, é função da tensão V<sub>G</sub> aplicada na eletrodo superior.  $W_d$  é dado por [10]:

 $\mathbf{W}_{d} = \left[ (2.\varepsilon_{si}.\psi s)/(q.N_{A,D}) \right]^{T}$ 

(2),

onde:

 $\varepsilon_{si}$  - coeficiente de permissividade elétrica do silício; q - carga do elétron;  $N_{A,D}$ - concentração de dopantes aceitadores ou doadores no silício.

A esquematização da região de depleção e o respectivo diagrama de bandas de energia da estrutura MOS estão nas Figs.5(a) e (b).





A capacitância relacionada a região de depleção  $(C_{sd})$  é associada em série com a capacitância do óxido do eletrodo superior, resultando em uma capacitância total da estrutura do capacitor MOS:

$$\begin{split} C_t(V_G) &= \left[ (1/C_{ox}) + (1/C_{sd}(V_G)) \right]^{1/2} \eqno(3), \\ \text{onde:} \\ C_t(V_G)\text{- capacitância total da estrutura MOS;} \\ C_{ox} &- \text{capacitância do óxido (Eq.1);} \\ C_{sd}(V_G)\text{- capacitância da região de depleção, que é dada por:} \end{split}$$

$$C_{sd}(V_G) = \varepsilon_{si}/W_d(V_G)$$
(4),

onde:

 $\varepsilon_{si}$  - constante dielétrica do silício.

(iii) Região de inversão: aumentando-se ainda mais a tensão V<sub>G</sub> aplicada na eletrodo superior da estrutura MOS (V<sub>G</sub> >> V<sub>fb</sub>), consegue-se igualar as concentrações de portadores (minoritários e majoritários) com a concentração do nível intrínseco do semicondutor (n=p=ni). Neste caso, os níveis intrínseco e o de Fermi no diagrama de bandas assumem valores iguais. Ocorre a atração de portadores minoritários (elétrons) em direção a superfície do substrato. Forma-se uma camada de inversão do tipo-n na interface Si/SiO<sub>2</sub>. Com um valor maior de V<sub>G</sub> (mantendo-se as condições de equilíbrio), há um aumento na concentração de elétrons na superfície do substrato,  $\psi$ s(V<sub>G</sub>) torna-se saturado e Wd torna-se constante, alcançando um valor máximo. Esta é a condição de inversão forte (V<sub>G</sub>>2V<sub>fb</sub>  $\Rightarrow \psi$ s>2 $\psi$ f), com W<sub>d</sub> = W<sub>max</sub> (região de depleção com largura máxima). O nível de Fermi aproxima-se da banda de condução próxima da superfície, como mostra as Figs.6(a) e (b).



Figura.6(a) Esquematização da região de inversão forte no capacitor; (b) Diagrama de bandas de energia com os encurvamentos dos níveis de energia Ec, Ev e Ei.

O valor da capacitância da estrutura MOS, em condição de inversão, é função da freqüência do sinal ac de polarização aplicado na eletrodo superior [10]. Para as medidas C-V em baixa freqüência, tipicamente entre 5 a 100 Hz, o período de um sinal ac é muito maior que o tempo de resposta dos portadores minoritários. Então, quando formada a camada de inversão, ocorre a geração de pares elétron-lacuna suficiente para compensar o sinal aplicado, ou seja, os elétrons (portadores minoritários) em alta concentração acompanham o sinal ac de baixa freqüência, mantendo-se um estado de equilíbrio. Assim, a capacitância total para a condição de inversão torna-se igual a  $C_{ox}$  (Eq.1).

Para medidas C-V em alta freqüência (> 1 kHz), em condições de acumulação e depleção, há portadores majoritários em concentração suficiente para responder à um sinal ac deste tipo. Mas, na inversão, a capacitância é determinada pelo tempo de resposta dos portadores minoritários. Para um sinal de polarização em alta freqüência, há um atraso dos portadores minoritários em relação a este sinal ac, ou seja, estes portadores não são gerados em taxa alta suficiente para compensar o sinal aplicado na eletrodo superior. Ocorre a modulação da camada de depleção de largura máxima e constante. Na condição de inversão forte, portanto, a capacitância total da estrutura MOS torna-se mínima:

$$C_{\min} = \left[ (1/C_{ox}) + (W_{dmax}/\epsilon_{si}) \right]^{1/2}$$
(5),

onde:

C<sub>min</sub>- capacitância total mínima para condição de inversão; utilizando-se sinal de polarização de alta freqüência;

 $W_{dmax}$ - largura máxima da camada de depleção;  $C_{ox}$ - capacitância no óxido;  $\varepsilon_{si}$ - constante dielétrica do silício.

Numa estrutura MOS não ideal, há a presença de cargas no óxido e na interface Si/SiO<sub>2</sub>, e as funções trabalho do metal e do semicondutor são diferentes. Isto provoca um deslocamento da curva C-V da estrutura MOS real em relação a ideal [4], pois a diferença de potencial entre os eletrodos do capacitor MOS (V<sub>G</sub>) depende diretamente da diferença das funções trabalho ( $\phi_{MS}$ ), da tensão no óxido (V<sub>ox</sub>), que é relacionada com as cargas efetivas no óxido Q<sub>o</sub>, e do potencial de superfície  $\psi$ s:

 $V_{G} = V_{ox} + \phi_{MS} + \psi_{S}$  (6),

(a) Para um capacitor MOS ideal, a Eq.6 torna-se:

 $V_{G} = \psi s$ , pois  $V_{ox} = 0$  e  $\phi_{MS} = 0$ . Para  $V_{G} = V_{fb}$  (condição de banda plana);  $\psi s = 0$ , portanto,  $V_{fb} = 0$ 

(b) Para um capacitor MOS real:

$$V_{ox} = Q_o .A/C_{ox}$$

onde:

C<sub>ox</sub> é dado pela Eq.1; A - área do dispositivo; Q₀- carga efetiva no óxido.

Para condição de banda plana:

$$\psi s = 0; V_G = V_{fb} = \phi_{MS} + Q_o \cdot A/C_{ox}$$
 (7).

Da expressão 7, tem-se que:

$$Q_o = [\phi_{MS} - V_{fb}].C_{ox}/A$$
(8)

Desta maneira, verifica-se um deslocamento no eixo da tensão (de  $V_{fb}=0$  para  $V_{fb}=V_G$ ) da curva C-V experimental (real) em relação a teórica (ideal) (Figura 9). A técnica C-V permite determinar importantes propriedades elétricas das estruturas MOS, através de comparação das curvas experimentais e teóricas [9]. Diferentes procedimentos de medidas e métodos (recursivo, gráficos e de deslocamentos de curvas C-V) são utilizados para determinar estas propriedades, como: capacitância de banda plana ( $C_{fb}$ ), tensão de bandaplana ( $V_{fb}$ ), largura da camada de depleção ( $W_d$ ), espessura do óxido ( $t_{ox}$ ), concentração efetiva de dopantes eletricamente ativos ( $N_{A,D}$ , A-para dopantes aceitadores de elétrons e D-para dopantes doadores de elétrons), densidade de carga efetiva no óxido ( $Q_o$ ), densidade de cargas capturadas na interface ( $Q_{it}$ ), densidade de cargas móveis ( $Q_m$ ), densidade de cargas fixas ( $Q_f$ ) e densidade de cargas capturadas ( $Q_{ot}$ ) no óxido [10].

## 2.1- CARGAS NO ÓXIDO DE SÍLICIO [10-14].

Há quatro tipos de cargas que normalmente são observadas na estrutura do SiO<sub>2</sub> e na interface SiO<sub>2</sub>/Si como mostrado na Figura 7 [10]: cargas móveis, cargas capturadas no ôxido, cargas fixas e cargas capturadas na interface. A carga efetiva Q<sub>0</sub> no óxido compreende estes quatro tipos de cargas. A presença delas no óxido ou na interface óxido/semicondutor ajuda a diminuir a integridade do filme isolante e aumenta a instabilidade do comportamento dos dispositivos MOS, gera ruídos, aumenta as correntes de fuga das junções e da superfície, diminui a tensão de ruptura dielétrica, altera o potencial de superfície  $\psi$ s, afeta a tensão de limiar V<sub>1</sub>. Níveis aceitáveis de densidade de carga efetiva no óxido em circuitos ULSI são da ordem de 10<sup>10</sup> cm<sup>-2</sup>.



Figura 7 - Cargas no Silício Termicamente Oxidado [10].

### 2.1.1 - Q<sub>m</sub> - CARGAS MÓVEIS.

As cargas móveis  $Q_m$  são associadas a contaminação do óxido de silício por íons dos metais alcalinos Na<sup>+</sup>, K<sup>+</sup> e Li<sup>+</sup> e íons H<sup>+</sup> e H<sub>3</sub>O<sup>+</sup>. Estes íons são móveis no óxido sob efeito de campo elétrico à temperaturas T  $\geq$  temperatura ambiente. Alteram o potencial de superfície  $\psi$ s e provocam instabilidade das características elétricas dos dispositivos MOS.

As cargas móveis  $Q_m$ , principalmente os íons de sódio Na<sup>+</sup>, podem incorporar-se ao óxido de silício nos processos de evaporação, oxidação térmica, recozimento térmico, aplicação de fotorresiste e em qualquer etapa da fabricação, em que se utiliza o manuseio das lâminas. A contaminação do óxido por cargas móveis pode ser reduzida para níveis aceitáveis da ordem de  $10^{10}$  cm<sup>-2</sup>, através da utilização de [10-14]:

\* tubos e borbulhadores de quartzo com alta pureza;

\* oxidação seca ou em ambiente clorado, com recozimento pós-oxidação para obtenção de óxido de eletrodo superior;

\* oxidação pirogênica ao invés da úmida (em ambiente com H<sub>2</sub>O) para obtenção de óxido de campo;

\* limpeza do tubo de quartzo do forno de processamento térmico em ambiente clorado em altas temperaturas, antes da oxidação;

\* óxido de silício dopado com fósforo (passivação com fosforosilicato);

\* reagentes, nas etapas químicas, com baixos níveis de Na<sup>+</sup>;

\* água D.I. 18 M $\Omega$  para último banho de cada etapa química;

\* evaporação com alumínio de alta pureza;

\* filamentos para evaporação livres de Na<sup>+</sup>;

\* evaporação por canhão de elétrons ou por "sputtering" ao invés de evaporação térmica;

\* luvas, máscaras e roupas adequadas para manuseio geral das lâminas;

\* processo automático de transporte das lâminas.

#### 2.1.2 - Q<sub>it</sub> - CARGAS CAPTURADAS NA INTERFACE SiO<sub>2</sub>/Si.

Por localizar-se na interface entre o  $SiO_2$  (material amorfo) e o Si (material cristalino), as cargas capturadas na interface  $Q_{it}$  ocorrem devido aos defeitos de posicionamento atômico de uma estrutura silício-oxigênio (Si parcialmente oxidado ou Si não saturado) e a presença de impurezas metálicas. Estados quânticos de energia são introduzidos na banda proibida do silício por estas cargas  $Q_{it}$ , permitindo uma maior facilidade de comunicação elétrica entre as bandas de valência e condução do silício. Conforme o potencial de superfície, esta facilidade de comunicação elétrica permite variar o estado da carga  $Q_{it}$  capturando (carregando) ou emitindo (descarregando) portadores [10-14]. Portanto, estas cargas são positivas ou negativas.

A presença de  $Q_{it}$  na interface SiO<sub>2</sub>/Si depende de vários parâmetros das etapas de fabricação dos dispositivos MOS [10-14], tais como: orientação cristalográfica dos substratos de silício), que determina a densidade relativa de ligações na interface, sendo  $Q_{it}(111)>Q_{it}(110)>Q_{it}(100)$ ; temperatura de oxidação; ambiente de oxidação ( $Q_{it}$  de ambiente de  $P_2O$ ); recozimento pós-oxidação em  $N_2$  em alta temperatura por tempo prolongado; contaminação por impurezas interfaciais (em ambientes de difusão, oxidação e implantação); recozimento a baixa temperatura em ambientes sem a presença de hidrogênio; e processos radioativos (litografia por feixe de elétrons, raio-X e UV, evaporação por feixe de elétrons, implantação iônica, plasma e "sputtering") que quebram ligações atômicas.

A neutralização efetiva das cargas Q<sub>it</sub> é executada por processos de recozimento pósmetalização (sinterização) em baixa temperatura (aproximadamente 450°C) em ambientes com a presença de hidrogênio [10-14]. O hidrogênio reduz a presença de Q<sub>it</sub> pois satura as ligações dos átomos de oxigênio e de silício e remove os defeitos estruturais na interface SiO<sub>2</sub>/Si. A unidade de densidade de cargas capturadas na interface D<sub>it</sub> é normalmente representada por número de cargas/cm<sup>2</sup>-eV e valores da ordem de 10<sup>10</sup>/cm<sup>2</sup>-eV são aceitáveis para tecnologia ULSI.

#### 2.1.3- Q<sub>f</sub> - CARGAS FIXAS.

As cargas fixas  $Q_f$  localizam-se na camada do óxido a menos de 2.5 nm da interface SiO<sub>2</sub>/Si, que é a região de óxido tensionado (óxido não-estequiométrico, com composição do tipo SiO<sub>x</sub>). As cargas fixas  $Q_f$  não se comunicam eletricamente entre as bandas de valência e condução do silício (não há troca de portadores com o semicondutor) e mantêm seu estado de carga (são cargas positivas).

A presença de  $Q_f$  no óxido depende de vários parâmetros, que são: a orientação cristalina dos substratos de silício ( $Q_f(111) > Q_f(110) > Q_f(100)$ ), o ambiente de oxidação (seco ou úmido), a

temperatura de oxidação, as condições de resfriamento dos substratos de silício após a oxidação e a pressão de  $O_2$  no ambiente de oxidação [10-14].

## 2.1.4- Qot - CARGAS CAPTURADAS NO ÓXIDO.

As cargas capturadas no óxido  $Q_{ot}$  localizam-se por todo o volume do filme de SiO<sub>2</sub> e são lacunas ou elétrons em armadilhas ("traps") no corpo do óxido. Estas armadilhas são impurezas e ligações atômicas quebradas (provocadas por tensões e defeitos no óxido). Normalmente são neutras, mas tornam-se carregadas quando elétrons ou lacunas são introduzidos no óxido por: tunelamento de portadores do substrato de silício ou da eletrodo superior (pode ocorrer para dispositivos MOS com óxidos de eletrodo superior ultra-finos); injeção de portadores por avalanche (pode ocorrer quando há grande diferença de potencial entre as várias regiões de um dispositivo em operação, provocando a aceleração de portadores por avalanche para dentro do óxido); e exposição a radiação ionizante (com energia > 8.8 eV(energia da banda proibida ("gap") do SiO<sub>2</sub> )) [10-14]. Além disso, as cargas capturadas no óxido  $Q_{ot}$  não variam com a polarização de eletrodo superior, como ocorre com as cargas capturadas na interface.

Recozimentos em ambiente com hidrogênio em aproximadamente  $450^{0}$ C são eficazes na minimização das cargas  $Q_{ot}$ .

## 3- VARIAÇÕES DA CARACTERÍSTICA C-V.

As Figuras 8 (a), (b), (c) e (d) apresentam as variações básicas da característica C-V de um capacitor, medida em alta freqüência e provocadas pela presença das cargas  $Q_m$ ,  $Q_f$ ,  $Q_{it}$  e  $Q_{ot}$ , respectivamente. Os deslocamentos no eixo da tensão das curvas C-V são as variações produzidas pela presença de  $Q_m$ ,  $Q_f$  e  $Q_{ot}$  no óxido. Como estas variações são similares, necessita-se de uma identificação completa da origem de cada carga [14]:



Figura 8- Variações básicas na características C-V de alta freqüência provocadas pela presença das cargas (a) Q<sub>f</sub>, (b) Q<sub>m</sub>, (c) Q<sub>it</sub> e (d) Q<sub>ot</sub> [14].

• A presença da carga fixa  $Q_f$  no óxido, que é geralmente positiva, provoca um deslocamento negativo no eixo da tensão e não exibe histerese (deslocamento para sinais de rampa crescentes e decrescentes) na curva C-V (Figura 8 (a)).

• A presença da carga móvel  $Q_m$ , que é geralmente devida à íons positivos que respondem a aplicação de campos locais no óxido mesmo em temperatura ambiente, provoca histerese na curva C-V devido `a sua movimentação desses íons no óxido, causada pela tensão em rampa aplicada durante a medida (Figura 8 (b)).

• A presença da carga capturada  $Q_{ot}$  no óxido provoca principalmente um deslocamento positivo (causado por elétrons capturados) ou negativo (causado por lacunas capturadas) no eixo da tensão, resultante em perturbações como a passagem de uma corrente eletrônica no óxido ou a geração de pares de elétrons-lacunas móveis dentro do óxido (Figura 8(d)). As cargas  $Q_{ot}$  no óxido também podem provocar histerese na curva C-V.

A carga capturada na interface  $Q_{it}$  provoca uma distorção na curva C-V de alta freqüência (Figura 8(c)). Ela está associada à densidade  $D_{it}(E)$  de estados quânticos de energia introduzidos por defeitos na banda proibida do silício (onde as cargas podem ser capturadas), o que causa uma maior comunicação elétrica entre as bandas de valência e condução do silício, resultando em um deslocamento  $\Delta V_{fb}$  da tensão de banda-plana na medida [14].

# 4- DETERMINAÇÃO DA DENSIDADE DE CARGAS EFETIVAS NA ESTRUTURA SiO<sub>2</sub>/Si.

Na estrutura MOS real ocorre a presença de cargas no óxido e na interface SiO<sub>2</sub>/Si, o que causa um deslocamento no eixo da tensão (de  $V_{fb}=0$  para  $V_{fb}=V_G$ ) da curva C-V experimental (real) em relação a teórica (ideal) (Figura 9). A neutralidade global de cargas na estrutura MOS é alcançada pela presença de uma carga imagem no semicondutor ou no metal correspondente às cargas no óxido e na interface SiO<sub>2</sub>/Si. Define-se como densidade de cargas efetivas no óxido Q<sub>o</sub>/q, a densidade da carga imagem induzida no semicondutor [12]. Portanto, pode-se assumir que a carga efetiva Q<sub>o</sub> no óxido compreende os quatro tipos de cargas apresentados.



Figura 9- Deslocamento no eixo da tensão (de V<sub>fb</sub>=0 para V<sub>fb</sub>=V<sub>G</sub>) da curva C-V experimental (real) em relação a teórica (ideal) [12].

## 4.1- PROCEDIMENTO - DETERMINAÇÃO DE Q<sub>0</sub>/q.

O sistema C-V de alta freqüência (1 MHz), com um capacímetro BOONTON 72-B, esquematizado na Figura 10, permite obter a capacitância diferencial em função da polarização no capacitor MOS. Neste sistema aplica-se uma tensão em rampa com velocidade baixa entre os eletrodos do capacitor. Determina-se  $Q_o/q$  através da comparação entre as curvas C-V experimental e teórica na condição de banda-plana (potencial de superfície nulo). Utilizando-se o valor de C<sub>fb</sub> (capacitância de banda-plana) ideal obtêm-se na curva C-V experimental o valor de V<sub>fb</sub> (tensão de banda-plana) (Figura 9). Com o valor de V<sub>fb</sub>, tem-se pela expressão (8) o valor de  $Q_o$ . O método mais usado para determinar C<sub>fb</sub> e conseqüentemente V<sub>fb</sub> e  $Q_o$  emprega o cálculo recursivo da concentração de dopantes N<sub>A,D</sub>.



Figura 10- Sistema C-V de alta freqüência.

## 4.1.1- MÉTODO RECURSIVO DE OBTENÇÃO DE Q<sub>0</sub>/q [12].

Considerando-se a curva C-V experimental da Figura 10, determina-se  $Q_0/q$  pelo método recursivo utilizando-se a seguinte seqüência de expressões:

• Da expressão 1, obtém-se o valor da espessura t<sub>ox</sub> do óxido:

$$\mathbf{t}_{\rm ox} = (\boldsymbol{\varepsilon}_{\rm o}.\boldsymbol{\varepsilon}_{\rm ox}.\mathbf{A})/\mathbf{C}_{\rm ox} \tag{9}$$

onde:

 $C_{ox}$  - capacitância no óxido =  $C_{max}$  - capacitância máxima para condição de acumulação;

 $\epsilon_{o}$  - permitividade no vácuo -  $\epsilon_{o} = 8.854 \times 10^{-14} \text{ F/cm};$ 

 $\varepsilon_{ox}$  - permitividade do óxido;

t<sub>ox</sub> - espessura do óxido;

A - área do eletrodo superior do capacitor MOS.

• Da expressão 5, obtém-se a largura da camada de depleção W<sub>d</sub>:

$$W_{d} = [(C_{\min}/C_{ox}) - 1].(\varepsilon_{Si} \cdot \varepsilon_{0} \cdot A)/C_{ox}$$
(10)

onde:

C<sub>min</sub>- capacitância total mínima para condição de inversão; utilizando-se sinal de polarização de alta freqüência;

 $C_{ox}$ - capacitância no óxido;  $\varepsilon_o$  - permitividade no vácuo;  $\varepsilon_{si}$ - constante dielétrica do silício -  $\varepsilon_{si} = 11.9$ .

 $\bullet$  Da equação 2 obtém-se a concentração de dopantes aceitadores ou doadores no silício  $N_{A,D}$ :

(12)

$$\mathbf{N}_{\mathrm{A},\mathrm{D}} = (4. \ \boldsymbol{\varepsilon}_{\mathrm{si}}. \ \boldsymbol{\phi}_{\mathrm{F}})/\mathbf{q}.\mathbf{W}_{\mathrm{d}}^{2} \tag{11}$$

onde:

 $\epsilon_{si}$  - coeficiente de permissividade elétrica do silício; q - carga do elétron - q = 1.602x10<sup>-19</sup> C; W<sub>d</sub> - largura da camada de depleção;

 $\phi_F$  - potencial de Fermi, dado por [14]:

$$\phi_{\rm F} = (kT/q). \ln[N_{\rm A,D}/n_i]$$

onde:

(kT/q) - energia térmica (300 K) = 0.0258 V; N<sub>A,D</sub> - concentração de dopantes aceitadores ou doadores no silício; ni - concentração de portadores intrínseco no silício - ni =  $1.45 \times 10^{10}$ /cm<sup>3</sup>.

e  $\phi_F > 0$ , para substrato tipo-p;  $\phi_F < 0$ , para substrato tipo-n.

• Substituindo-se a expressão 12 em 11, tem-se a expressão para determinação de  $N_{A,D}^{*}$  recursivamente:

$$N_{A,D} = \{ [(4.\epsilon_{si}.kT)/q] . \ln[N_{A,D}^*/ni] \} / q.W_d^2$$
(11)

onde:

 $ε_{si}$  - coeficiente de permissividade elétrica do silício; q - carga do elétron - q = 1.602x10<sup>-19</sup> C; W<sub>d</sub> - largura da camada de depleção; (kT/q) - energia térmica (300 K) = 0.0258 V; N<sub>A,D</sub>\* - concentração de dopantes obtida recursivamente; n<sub>i</sub> - concentração de portadores intrínseco no silício - n<sub>i</sub> = 1.45x10<sup>10</sup>/cm<sup>3</sup>.

• O valor de  $N_{A,D}^{*}$  é substituído na expressão da capacitância de banda-plana C<sub>fb</sub>, dada por [14]:

$$C_{\rm fb} = \left(\epsilon_{\rm o}.\epsilon_{\rm ox}.A\right) / \left\{ t_{\rm ox} + \left(\epsilon_{\rm ox}/\epsilon_{\rm si}\right) \cdot \left[ (kT/q) \cdot \epsilon_{\rm si}/(q.N_{\rm A,D}) \right]^{1/2} \right\}$$
(12)

onde:

 $\begin{array}{l} \epsilon_{si} \mbox{ - coeficiente de permissividade elétrica do silício;} \\ t_{ox} \mbox{ - espessura do óxido; } \epsilon_{ox} \mbox{ - permitividade do óxido;} \\ A \mbox{ - área do eletrodo superior do capacitor MOS} \\ q \mbox{ - carga do elétron - } q \mbox{ = } 1.602 x 10^{-19} \mbox{ C;} \\ (kT/q) \mbox{ - energia térmica (300 K) \mbox{ = } 0.0258 \mbox{ V;} \\ N_{A,D} \mbox{ - concentração de dopantes obtida recursivamente;} \\ n_i \mbox{ - concentração de portadores intrínseco no silício - } n_i \mbox{ = } 1.45 x 10^{10} / \mbox{cm}^3. \end{array}$ 

• Substituindo-se este valor de  $C_{fb}$  na curva C-V (Figura 9), obtém-se o valor correspondente da tensão de banda-plana  $V_{fb}$ , que substituído na expressão:

 $Q_{o}/q = [\phi_{MS} - V_{fb}] \cdot C_{ox}/q \cdot A$ 

que é similar a expressão A8,

onde:  $V_{fb}$  - tensão de banda-plana;  $C_{ox}$  - capacitância no óxido =  $C_{max}$  - capacitância máxima para condição de acumulação; q - carga do elétron - q =  $1.602 \times 10^{-19}$  C; A - área do eletrodo superior do capacitor MOS;

e  $\phi_{MS} = \phi_M - \phi_S$  - diferença entre as funções trabalho do metal e do semicondutor;

 $\operatorname{com} \phi_{\text{S}} = -\phi_{\text{F}}$  e para eletrodo de Al  $\Rightarrow \phi_{\text{M}} = -0.6$  V; portanto, neste caso:

 $\phi_{\rm MS} = -0.6 - (-\phi_{\rm F})$ 

## 5- RUPTURA NOS ÓXIDOS E CARACTERÍSTICA I-V.

Um campo elétrico muito intenso (> 1MV/cm), maior que um determinado valor crítico, aplicado à estrutura MOS provoca a ruptura do óxido, que perde as propriedades isolantes. Este campo elétrico denominado campo de ruptura dielétrica E<sub>br</sub> é dado por [15]:

 $E_{br} = V_{br}/t_{ox}$ 

(15)

(14).

(13),

onde:

 $V_{br}$  - tensão correspondente à ruptura dielétrica (unidade expressa em [MV]);  $t_{ox}$  - espessura do óxido (unidade expressa em [cm]).

A ruptura dielétrica é um fenômeno que pode ocorrer através da multiplicação por avalanche de elétrons [15]:

• Um campo elétrico suficientemente intenso, aplicado ao capacitor MOS, fornece a alguns elétrons energia suficiente para serem injetados na banda proibida do óxido. Os elétrons injetados, que estão com alta energia cinética, colidem com outros elétrons ligados na rede

cristalina, retirando-os de suas órbitas e gerando elétrons e lacunas livres, que contribuem para o aumento da corrente e de defeitos ("traps") no corpo do óxido. Os pares elétron-lacuna gerados podem então criar elétrons e lacunas livres adicionais ao longo de suas trajetórias dentro da rede cristalina. Este processo causa uma multiplicação de portadores livres por avalanche na estrutura dielétrica.

• O processo de avalanche provoca o surgimento de uma grande quantidade de defeitos ("traps") na estrutura dielétrica. Além disso, o óxido torna-se aquecido pela interação dos pares elétron-lacuna gerados. Em algumas posições da rede cristalina, o material aquecido pela alta densidade de energia cinética local alcança a sua temperatura de fusão. Neste locais, onde o material se funde, forma-se um micro plasma, que rompe totalmente a estrutura do dielétrico.

• As lacunas ou elétrons gerados podem também ocupar algumas armadilhas ("traps"), que são impurezas e ligações atômicas quebradas (provocadas por tensões e defeitos) já anteriormente presentes no corpo do óxido. Estas armadilhas, normalmente neutras, quando se tornam carregadas pela introdução de elétrons ou lacunas, são denominadas de cargas capturadas no óxido  $Q_{ot}$  e localizam-se por todo o volume do filme de SiO<sub>2</sub> (item 2.1.4). A presença destas cargas no óxido também contribui para o aumento da corrente no corpo do dielétrico. Com isso, a ruptura do óxido pode ocorrer pela aplicação de campos menos intensos (< 6 MV/cm).

## 5.1- CARACTERÍSTICA I-V.

O campo de ruptura dielétrica pode ser determinado através da característica I-V do capacitor MOS, obtida pela aplicação de uma tensão dc (> 3 V). A Figura 11 mostra em (a) o arranjo experimental para a obtenção da medida corrente x tensão e em (b) mostra uma característica I-V de um capacitor MOS. Um analisador de parâmetros HP-4145B, que permite aplicar uma tensão dc de até 100 V, foi o equipamento utilizado para a obtenção da medida I-V.



Figura 11. (a) Arranjo experimental para a obtenção da medida I-V; (b) Característica I-V de um capacitor MOS [14].

Da característica I-V (Figura 11) se obtém o valor correspondente de tensão aplicada ao capacitor MOS que permite o aumento da corrente elétrica. Este valor de tensão dividido pela espessura do isolante (expressão 15) resulta no valor do campo de ruptura dielétrica.

## 6- REFERÊNCIAS BIBLIOGRÁFICAS.

[1]- J.E. Lilienfeld, U.S. Patent, 475175 (1926), 1877140 (1928) e 190018 (1928).

[2]- O. Heil, British Patent, 439457 (1935).

[3]- W. Shockley and G.L. Pearson, Phys. Review, 74, 547 (1945).

[4]- G.J. Frosch and L. Derrick, J. Electrochem. Soc., 104, 547 (1957).

[5]- J.A. Hoerni, "Planar Silicon Transistors and Diodes", IRE Electron Devices Meeting - Washington D.C. (1960).

[6] D. Khang and M.M. Atalla, "Silicon-Silicon Dioxide Field-Induced Surface Devices", IRE-AIEE Solid-State Device Research Conference, Carnegie Institute of Technology, Pittsburgh, Pa. (1960).

- [7]- S.R. Hofstein and F.P. Heiman, Proc. IEEE, 51, 1190 (1963).
- [8]- E.H. Snow, J. Appl. Phys., 36(5), 1664 (1965).

[9]- J.A. Diniz, Tese de Mestrado-FEEC/UNICAMP (1992).

[10]- D.F. Takeuti, Tese de Mestrado-FEEC/UNICAMP (1992).

[11]- F. Damiani, Tese de Doutorado-FEEC/UNICAMP (1982).

[12]- N.G. Fontela, Tese de Mestrado- LME/USP (1978).

[13]- E.H. Nicollian and J.R. Brews, "MOS (Metal Oxide Semiconductor) Technology", John Wiley & Sons, New York (1982).

[14]- F.J.Feigl, "VLSI Electronics - Microelectronic Science", Ed. N.G. Einspruch e G.B. Larrabee, Academic Press, **6**, 147 (1983).

[15]- N.P. Bogoroditsky, V.V. Pasynkov and B.M. Tareev, "Electrical Engineering Materials", MIR Publishers Moscow, 79 (1979).