Eq. de Schrodinger - po¢o quadrado infinito
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FIGURE 5.3 A particle moves freely in !
the one-dimensional region0 = x <L, Ground
- but is excluded completely from x < 0 e
and x > L.

FIGURE 5.4 The permitted energy levels of the one-dimen-
sional infinite square well. The wave function for each level is
shown by the solid curve, and the shaded region gives the prob-
ability density for each level.



Eq. de Schrodinger - poc¢o quadrado 2D
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FIGURE 5.5 A particle moves freely in el 2Ky
the two-dimensional region 0 s x < [, (nz, ny) Energy
O=sy <L -
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FIGURE 5.6 The lower permirted

energy levels of the particle confined to

the two-dimensional box.



Eq. de Schrodinger - poc¢o quadrado 2D

Degenerescéncia = Energia igual e distribuicao similar
(1,2) e (2,1), (1,3) e (3,1), (3,2) e (2,3), (7,1) e (1,7)

FIGURE 5.7 The probability density ¢* for some of the lower energy levels of the par-
ticle confined to the two-dimensional box.



Eq. de Schrodinger - poc¢o quadrado 2D

Degenerescéncia = Energia igual e distribuicéo diferente
E=50E0 =(7,1) e (1,7) similar dist. =(5,5) dist. diferente

FIGURE 5.8 Two very different probability densities with exactly the same energy.



Eq. de Schrodinger - oscilador harmdnico simples
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FIGURE 5.9 The ground state of the
one-dimensional harmonic oscillator.
The kinetic energy K is the difference
between the total energy E and the po-
tential energy V = ikx?. Classical phys-
ics does not permit the particle to
move beyond the classical turning
points X = x A,, where its kinetic en-
ergy would be negative. The probability
density y? extends beyond the classical
turning points, so there is according to
quantum physics some probability for
the particle to enter the classically for-
bidden region.

FIGURE 5.10 The lowest few energy levels and corresponding
probability densities of the harmonic oscillator.



Eq. de Schrodinger - degrau p/ E>Vo
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FIGURE 5.11 A step of height V.
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FIGURE 5.12 The wave function of a particle of energy E en-
countering a step of height V,, for the case E > V,. The deBrog-
lie wavelength changes from A\, to X\, when the parrticle crosses
the step, but ¢ and dyi/dx are continuous at x = 0.



Eq. de Schrodinger - degrau p/ E<Vo
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FIGURE 5.11 A step of height V.
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FIGURE 5.13 The wave function of a particle of energy E en-
countering a step of height V,, for the case E < V,. The wave
function decreases exponentially in the classically forbidden re-

gion, where the classical kinetic energy would be negative. At
x = 0, ¢ and dy¢/dx are continuous.




Eq. de Schrodinger - barreira de potencial p/ E<Vo
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FIGURE 5.14 A barrier of height V, and width a.
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FIGURE 5.15 The wave function of a particle of energy E < V,
encountering a barrier potential (the particle would be incident
from the lefr in the figure). The wavelength A, is the same on
both sides of the barrier, but the amplitude beyond the barrier
is much less than the original amplitude. The particle can
never be observed inside the barrier (where it would have nega-
tive kinetic energy) bur it can be observed beyond the barrier.
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FIGURE 5.19 The potential barrier FIGURE 5.20 (¢) Total internal reflection of light waves at a

gla'..ss-air boundary. (b) Frustrated total internal reflection. The
thicker the air gap, the smaller the probability to penetrate.
Note that the light beam does not appear in the gap.

seen by an electron in a tunnel diode.
The conductivity of the device is deter-
mined by the electron’s probability to
penetrate the barrier, which depends on
the height of the barrier.




Tunelamento —— Ondas de agua

FIGURE 5.21 Frustrated total internal reflection for water waves. At the boundary the
depth increases suddenly and the waves are totally reflected. When the gap is made

narrow, the waves can penetrate and appear on the other side. (Courtesy of Education

Development Center, Inc., Newton, MA )



