Cap 8 Difusão de Dopantes em Si

Jacobus W. Swart CCS e FEEC - UNICAMP

Sumário

- 1. Introdução
- Desenvolvimento Histórico e Conceitos Básicos
- 3. Métodos de Manufatura e Equipamentos
- 4. Métodos de Caracterização
- 5. Modelos e Simulação
- 6. Limites e Tendências Futuras

8.1 Introdução

- Desafios para fabricação de dispositivos e IC's:
 - Controlar com exatidão dopagens localizadas
 - Entender a processos e mecanismos de difusão e recozimentos.
- Necessitamos junções cada vez mais rasas.
- Para reduzir resistências parasitárias → ativação elétrica[↑]

Resistência de Folha: a) caso n = cte

$$V = RI \Rightarrow J = \frac{I}{A} = \frac{I}{W.x_J} = \frac{V/R}{W.x_J} = \frac{1}{R} \frac{L\varepsilon}{W.x_J}$$
$$R = \rho \frac{L}{W.x_J} = \frac{\rho}{x_J} \frac{L}{W} = R_S \frac{L}{W} \Rightarrow R_S = \frac{\rho}{x_J} [\Omega/sq.]$$
$$J = \frac{1}{\rho} \varepsilon = qnv = qn\mu\varepsilon \Rightarrow \rho = \frac{1}{qn\mu}$$

Resistência de Folha: b) caso $n \neq cte$

$$R_{S} = \frac{1}{\overline{\sigma}.x_{J}} = \frac{1}{q \int_{0}^{x_{J}} \left[n(x) - N_{B}\right] \mu(n(x)) dx}$$

Resistência série MOS e Roadmap (1997): • Necessita-se $R_{série} \le 10\% R_{canal} \Rightarrow x_J = compromisso$ entre $R_{série}$ e DIBL e/ou punchthrough.

Table 7–1 Channel doping requirements from the NTRS roadmap, showing the continuing drive to obtain shallow junctions (From [7.2])

Year of First DRAM Shipment	1997	1999	2003	2006	2009	2012
Min Feature Size	0.25 µ.	0.18 µ	0.13 μ	0.10 µ.	0.07 μ	0.05 μ
DRAM Bits/Chip	256M	1G	4G	16G	64G	256G
Minimum Supply Voltage (volts)	1.8-2.5	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6
Gate Oxide Tex Equivalent (nm)	4-5	3-4	2-3	1.5-2	<1.5	<1.0
Sidewall Spacer Thickness xw (nm)	100-200	72-144	52-104	20-40	7.5-15	5-10
Contact x _i (nm)	100-200	70-140	50-100	40-80	15-30	10-20
x _i at Channel (nm)	50-100	36-72	26-52	20-40	15-30	10-20
Drain Ext Conc (cm ⁻³)	1×10^{18}	$1 imes 10^{19}$	$1 imes 10^{19}$	$1 imes 10^{20}$	$1 imes 10^{20}$	1×10^{30}

Necessitamos:

- Fonte/Dreno raso, com alta concentração – é a questão mais crítica !!!
- Regiões mais profundas e menos dopadas para ilhas e ajustes de V_T de transistores e regiões de isolação.

8.2 Desenvolvimento Histórico e Conceitos Básicos.

- Até 1960 junções: tipo *alloy* e tipo mesa
- Após 1960 processo planar: junção por 2 passos: pré-deposição e *drive-in* (penetração)

Pré-deposição:

- Impurezas em contato íntimo com um sólido, ou presentes na sua superfície, irão penetrar no sólido por processo chamado difusão.
- Ela ocorre se a temperatura for suficientemente alta.
- Normalmente são utilizados fornos térmicos idênticos aos utilizados para oxidação térmica.
- Fontes de dopantes: gasoso, líquidos ou sólidos.
- a) fontes gasosos: AsH₃, AsF₃, PH₃, PF₃, B₂H₆, BF₃, BCl₃.

- b) Fontes líquidas: POCl₃, BBr₃, Sb₃Cl₅ (borbulha-se O₂ ou N₂ através do líquido mantido em banho Maria e frasco selado).
- c) Fontes sólidas:
 - Em forma de pó ou grãos colocados no fundo do forno em zona com temperatura adequada – gás portador carrega o vapor da fonte sólida até as lâminas. Ex.: Sb₂O₃, Sb₂O₄.
 - Em forma de discos de composto do dopante. São intercalados entre as lâminas na barqueta no forno.
 Ex.: BN, AlAsO₄, (NH₄)_XH₂PO₄, x = 1 ou 2.
 - Em forma de um óxido dopado depositado sobre a lâmina (por CVD ou por spinner – SOG). Ex.: BSG, PSG, etc.

- Pré-deposição introduz uma quantidade desejada de dopantes.
- A quantidade (integral) não é muito bem controlado. Inaceitável para alguns casos como ajuste de V_T, formação de ilhas, etc.
- Solução: usar técnica de implantação de íons (I/I).
- Porém, I/I \rightarrow danos \rightarrow recozimento (com TED) $\rightarrow x_J >$ desejado.
- Re-surge interesse por difusão a partir fase sólida ou gasosa para Fonte/Dreno.

Table 7–2 Comparison of ion implantation versus solid- or gas-phase doping methods				
Advantages				
Ion Implantation and Annealing	Solid-/Gas-Phase Diffusion			
Room temperature mask	No damage created by doping			
Precise dose control	Batch fabrication			
1011 - 1016 atoms cm-2 doses				
Accurate depth control				
Disadvantages				
Ion Implantation and Annealing	Solid-/Gas-Phase Diffusion			
Implant damage enhances diffusion	Usually limited to solid solubility			
Dislocations caused by damage may cause junction leakage	Low surface concentration hard t achieve without a long drive-in			
Implant channeling may affect profile	Low dose predeps very difficult			

Solubilidade Sólida de Dopantes:

• É a máxima concentração do dopante que pode ser dissolvida no Si em equilíbrio sem formar uma fase separada.

- Interessa a máxima ativação elétrica.
- É limitado por máxima solubil. sólida, mas tb. por efeitos cinéticos.
- Pode ser afetado por formação de agregados dopante-DP neutros.

- Ex.: As máx. sol. sólida ~ 2 x 10²¹ cm⁻³, porém obtém-se normalmente ativação elétrica máxima de 2 x 10²⁰ cm⁻³ (fusão por laser consegue-se uma concentração metaestável próxima à máx. sol. sólida).
- Explicação: formação de estrutura inativa (vários átomos de As em torno de vacância)

Difusão sob ponto de vista macroscópico:

- Macroscópico: considera o movimento global do perfil de dopagem e prevê a sua variação pela solução de equação de difusão, sujeito a condições de contorno.
- Microscópico: considera o movimento de dopantes em nível de escala atômica; - como o átomo dopante interage com os DP's e como isto afeta o movimento global. Ela explica o comportamento complexo da difusão em processos modernos e constitui a base dos modelos usados nos programas de simulação.

Leis de Fick

$$F = -D\frac{\partial C}{\partial x}$$

D = coef. de difusão (cm² s⁻¹)

- Para cristal com simetria cúbica (Si, etc), D tem o mesmo valor em todas as direções.
- Tem analogia às leis de Fourier de luxo de calor (proporcional ao gradiente de temperatura) e de Ôhm (corrente proporcional ao gradiente de potencial).

2ª Lei de Fick – baseada na conservação da matéria

$$\frac{\Delta C}{\Delta t} = -\frac{\Delta F}{\Delta x} = -\frac{F_{out} - F_{in}}{\Delta x} \Longrightarrow$$
$$\frac{\partial C}{\partial t} = -\frac{\partial F}{\partial x}$$

Combinando as duas leis, obtém-se:

 $\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\partial C}{\partial x} \right)$ ∂x

Caso D seja constante:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

A $2^{\underline{a}}$ lei de Fick em 3D:

$$\frac{\partial C}{\partial t} = \nabla . F = \nabla . \big((D \nabla C) \big)$$

Soluções Analíticas da Equação de Difusão a) Caso de estado estacionário (sem variação no tempo):

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} = 0 \Longrightarrow C = a + bx$$

Aplica-se por ex., ao caso da difusão da espécie oxidante no óxido, durante processo de oxidação

b) Solução Gaussiana em um meio infinito: Considere um perfil inicial como função delta em x=0:

Condições de contorno são: $C \rightarrow 0 p/t \rightarrow 0 e x > 0$ $C \rightarrow \infty p/t \rightarrow 0 e x = 0$

$$\int_{-\infty}^{\infty} C(x,t) dx = Q = \text{Dose}$$

Resolvendo a 2^a lei de Fick, obtém-se:

$$C(x,t) = \frac{Q}{2\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) = C(0,t) \exp\left(-\frac{x^2}{4Dt}\right)$$

C(0,t) cai com inverso da raiz de t P/ x=2 \sqrt{Dt} (=comprimento de difusão) \rightarrow C

$$C(x,t) = \frac{1}{e}C(0,t)$$

c) Solução Gaussiana próxima à superfície

 Assumindo que não haja evaporação e/ou segregação de dopantes na superfície, podemos adotar a superfície como espelho ou refletor de dopantes. Assim, é como se tivéssemos uma dose 2Q num meio infinito.

$$C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) = C(0,t) \exp\left(-\frac{x^2}{4Dt}\right)$$

$$C(0,t) = \frac{Q}{\sqrt{\pi Dt}}$$

Maior precisão pode ser obtida por simulação numérica.

d) Função erro em meio infinito

 Aplica-se ao caso de termos uma região como fonte que tenha uma concentração constante no tempo. Qual a profundidade da difusão?

Condições de contorno: C = 0 para x>0 em t = 0 C = C para x<0 em t = 0

Podemos resolver, considerando fatias de carga C Δx , com soluções dadas acima, e usar superposição linear \rightarrow resulta:

$$C(x,t) = \frac{C}{2} \left[1 - erf\left(\frac{x}{2\sqrt{Dt}}\right) \right] = \frac{C}{2} \left[erfc\left(\frac{x}{2\sqrt{Dt}}\right) \right]$$

onde:

$$erf(z) = \frac{2}{\sqrt{\mu}} \int_0^z \exp(-\eta^2) d\eta$$

Evolução no tempo.

e) Solução Função-Erro próximo à superfície

- Aplica-se ao caso de $C(0,t) = C_s = cte$.
- Observe na fig. anterior, que C(0,t) = C/2 = cte.
- Podemos usar a mesma solução matemática, corrigindo agora o C/2 por C_S: $C(x,t) = C_S \left[erfc \left(\frac{x}{2\sqrt{Dt}} \right) \right]$

Comentários:

- Solução função erro complementar aplica-se ao caso de fonte contínua, mantendo $C_S = cte$ (pré-deposição)
- Solução Gaussiana aplica-se ao caso de dose constante (penetração).
- Ambas as soluções são aproximadas e eram usados no passado, com junções profundas.
- Erros:
 - D muitas vezes varia com C = f(x)
 - Não considerou efeito de campo elétrico.
 - Podemos ter efeitos de segregação na superfície.
 - Processos complexos de DP's afetam a difusão.
- Solução: uso de métodos numéricos para cálculo do perfil de dopagem.

Coeficiente de Difusão Intrínseca de Dopantes em Si.

$$D = D^0 \exp\left(\frac{-E_A}{kT}\right)$$

 E_A = energia de ativação (3.5 e 4.5 eV – dopantes em Si)

Table 7–3 Intrinsic diffusivity in cm ² sec ⁻¹ for sili common dopants in single-crystal silico expression					tor silicon al silicon, f	selt-dittusion itted to an	on and of Arrhenius
	Si	В	In	As	Sb	Р	Units
D^0	560	1.0	1.2	9.17	4.58	4.70	cm ² sec ⁻¹
EA	4.76	3.5	3.5	3.99	3.88	3.68	eV

Intrínseco depende da Temperatura. Ex.: n_i (Si, 1000°C) = 7.14 x 10¹⁸ cm⁻³. Se dopagem < $n_i \Rightarrow$ intrínseco. Caso contrário, Si extrínseco \Rightarrow D será afetado (aumenta).

As e Sb – difusão lenta; P, B e In – difusão rápida.

Junções rasas:

n⁺ - usar As (D \downarrow e solubilidade \uparrow) P⁺ - usar B (único c/ solubilidade \uparrow , porém D \uparrow) D x 10⁴/T para vários elementos .

- \Rightarrow Metais: D $\uparrow\uparrow$ e $E_A \downarrow$
- \Rightarrow Extrapolação p/ T=amb.
- \Rightarrow Metais: 1 deslocamento a cada min.
- ⇒Dopantes: 1 deslocamento a cada 10⁴⁵ anos!

Efeito de Etapas Sucessivas de Difusão

• a) Caso de várias etapas na mesma temperatura:

$$\left(Dt\right)_{ef} = Dt_1 + Dt_2 + \dots$$

O produto efetivo Dt = pacote térmico

• b) Caso de etapas em temperaturas distintas:

$$(Dt)_{ef} = D_1 t_1 + D_2 t_2 + \dots = D_1 t_1 + D_1 \left(t_2 \frac{D_2}{D_1} \right) + \dots$$

Como D aumenta exponencialmente, pode-se desprezar as etapas a mais baixas temperaturas.

Projeto e avaliação de camadas difundidas

- Parâmetros importantes: R_S, C_S, x_J.
- Os 3 parâmetros são interdependentes. Dois são suficientes para definir um perfil erfc ou Gaussiano.
- Ex.: curvas de Irvin:

8.3 Métodos de Manufatura e Equipamentos

- Fornos térmicos: T = 800 a 1100 °C
- Se ambiente inerte: N_2 ou Ar \rightarrow apenas penetração.
- Recomenda-se usar uma capa de óxido ou similar, para proteger a superfície e evitar evaporação de dopante.

• Para
$$x_J \downarrow \Rightarrow Dt \downarrow \Rightarrow RTA$$

Taxa ~ 100 °C/s. T uniforme em ms. t tipico = 1 a 100 s Requer projeto especial para compensar perda de calor na borda \rightarrow slip lines.

Furnace	RTA	
Batch	Single wafer	
Long time	Short time	
Slow ramp	Fast ramp	
Long stabilization	Short steady state	
Excellent temperature control	Accurate temperature control difficult	

Table 7–4 Summary of furnace and RTA diffusion and annealing system characteristics

 Para reduzir mais ainda o pacote térmico → usar "spike annealing" ou "laser anneling".

8. 4 Métodos de Caracterização

a) SIMS

[O] p/ B e In
[Cs] p/ As, P e Sb
-melhora ionização
E = 1 a 15 keV

- Resulta num perfil químico (≥ perfil elétrico)
- Sensibilidade ~ ppm, ou seja, 10^{16} a 10^{17} cm⁻³.
- [O] apresenta menos "knock on" (= perda de resolução em profundidade), comparado ao [Cs] (mais pesado)
- Difícil medir próximo à superfície (junção rasa) → reduzir energia p/ 200 eV a 5 keV.

b) Resistência de Espalhamento

- Desbaste em ângulo (pasta diamantada) $\theta = 8 e 34^{\circ}$
- Medida do ângulo: óptica ou por perfilômetro.
- R(y) permite calcular C(x)
- C(x) = concentração eletricamente ativa

• Pontas: bom contato sem penetrar muito no Si (arte)

Passar pontas em pasta diamantada – rugosidade.
Diferença entre SIMS e SRP = C(x) não ativa

c) Resistência de Folha – R_{S} [Ω / \Box]

 Método de 4 pontas – limitado para junções rasas, pois as pontas perfuram a junção.

$$R_{S} = \frac{\rho}{x_{J}} = \frac{\pi}{\ln 2} \frac{V}{I} = 4.532 \frac{V}{I} (\Omega / sq)$$

Método da estrutura
 Van der Pauw:

d) Profundidade de Junção - x_J

- Desbaste cilíndrico
- Revelação química coloração:
 - Camada n: sol. $CuSO_4 + HF + H_2O + luz$ (dep. Cu)
 - Camada p: sol. HF + HNO₃

e) Capacitância versus Tensão

- Na região de polarização: C = f(V), x_D = f(V), x_D = f(N)
- Cálculo permite extrair N(x) da curva C-V.
- Aplica-se a dopagens médias, como na região de canal e de isolação.

f) Secção em corte TEM

Extensão de TEM para análise qualitativa 2D de perfil de junção:

- Etching seletivo, taxa dependente de nível de dopagem, revela o perfil.
- Usa-se etching em HF:HNO₃:CH₃COOH = 1:40:20
- Preparação de amostra para TEM é uma arte e consome muito tempo.

g) Medida Elétrica 2D Usando Microscopia de Ponta de Prova de Varredura.

- Medidas elétricas medem portadores e não a posição dos dopantes.
- Distância média entre dopantes: 1.3nm (10²⁰), 6.2nm (10¹⁸) e 28.8nm (10¹⁶ cm⁻³). Portadores não acompanham estas distância e são espalhados.
- Scanning Probe Methods derivam de STM.
- Scanning Capacitance e Scanning Resistance Probes derivam de AFM apresentam grande potencial. Necessita desbastar em ângulo e depositar fina camada de óxido. Mede-se capacitância MOS da ponta vs (x,y)

Imagem SCM de amostra de Si c/ I/I de ³¹P⁺ 50keV, 10¹³ cm⁻² e RTA de 1050C, 30s.

Alternativa: usar AFM para medir função trabalho, que depende da dopagem.

h) Medida Elétrica Inversa

- Compara-se medidas elétricas I-V e C-V com resultados de simulação.
- Como simulação elétrica é bem confiável (equações de semicondutores são bem conhecidos), qualquer diferença pode ser atribuída a erro na simulação de dopagens (modelos de difusão, interação dopante/DP não são tão bem entendidos)
- ⇒ ajustar parâmetros do modelo de difusão (não é muito simples).

8.5 Modelos e Simulação

Necessitamos simuladores de processos:

Métodos numéricos
Modelos físicos sofisticados de difusão.

SUPREM IV – 2D e versões comerciais

Considera vários efeitos que afetam D

8.5.1 Soluções Numéricas da Eq. de Difusão

- Cada fatia contém N_i cm-², ou seja, $N_i = C_i \Delta x$ (cm⁻³.cm).
- Os átomos vibram c/ $v_d \sim 10^{13}$ Hz em Si, freq de Debye.
- Se $E > E_b$ (barreira), o átomo muda de sítio.
- Freq. de pulos:

$$v_b = v_d \exp\left(-\frac{E_b}{kT}\right)$$

 Metade dos átomos que pulam, irão para direita ou esquerda. • O fluxo de átomos através do plano 2 por ex., será:

$$F = -\frac{V_b}{2} \left(N_2 - N_1 \right) = -\frac{V_b}{2} \Delta x \left(C_2 - C_1 \right) = -\frac{V_b}{2} \Delta x^2 \frac{\Delta C}{\Delta x} = -D \frac{\Delta C}{\Delta x}$$

• onde:
$$D = \frac{V_b}{2} \Delta x^2$$

- Como calcular a evolução da difusão?
 - Considere o plano i. Átomos dos planos i-1 e i+1 irão trocar átomos pelos fluxos nas 2 interfaces, no intervalo ∆t.
 - A nova densidade de átomos no plano i será:

$$\begin{split} N_i^+ &= N_i + \frac{v_b}{2} \Delta t \left(N_{i-1} - 2N_i + N_{i+1} \right) \\ C_i^+ &= C_i + \frac{v_b}{2} \Delta t \left(C_{i-1} - 2C_i + C_{i+1} \right) \end{split}$$

Substituindo por D, obtemos:

$$C_{i}^{+} = C_{i} + \frac{D\Delta t}{\Delta x^{2}} (C_{i-1} - 2C_{i} + C_{i+1})$$

- Esta é a equação básica para cálculo de difusão por método numérico.
- Falta escolher $\Delta x \in \Delta t$ apropriados: Δx , para não distorcer o perfil (linear entre 2 pontos), e, Δt suficientemente pequeno relativo ao tempo total.
- Um limite para $\Delta x \in \Delta t$:

$$\frac{D\Delta t}{\Delta x^2} = \frac{1}{2} \Longrightarrow \quad C_i^+ = \frac{1}{2} \left(C_{i-1} + C_{i+1} \right)$$

• Se $\frac{D\Delta t}{\Delta x^2} > \frac{1}{2} \Rightarrow C_i^+ \text{ oscila} \Rightarrow \text{ instavel!}$

• O método permite ter D diferente em qq p^{to}.

8.5.2 Leis de Fick com Efeitos de Campo Elétrico

Para C↑↑ ⇒ extrínseco (T dif.)
⇒ "junção" ⇒ campo elétrico
⇒ fluxo adicional de átomos,
F'=Cv, onde v é a velocidade
devido à força do campo ⇒

$$F_{total} = F + F' = -D\frac{\partial C}{\partial x} + Cv \Longrightarrow$$
$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D\frac{\partial C}{\partial x} \right) - v\frac{\partial C}{\partial x}$$

$$v = \mu \varepsilon$$
$$\varepsilon = \frac{\partial \psi}{\partial x}$$

$$\psi = -\frac{kT}{q} \ln \frac{n}{n_i} \quad \mu = \frac{q}{kT} D \quad F = -D\frac{\partial C}{\partial x} - DC\frac{\partial}{\partial x} \ln \frac{n}{n_i}$$

Como: $\frac{\partial}{\partial x} \ln x = \frac{1}{x} \Rightarrow \quad F = -DC\frac{\partial}{\partial x} \ln \left(C\frac{n}{n_i}\right)$

- Esta é a equação que SUPREM resolve em equilíbrio útil mesmo quando múltiplos dopantes contribuem para o campo.
- Quanto o campo aumenta a difusão?

$$F = -hD\frac{\partial C}{\partial x}, onde: C = |N_D - N_A|$$
$$h = 1 + \frac{C}{\sqrt{C^2 + 4n_i^2}} \Longrightarrow 1 \le h \le 2$$

Exemplo de efeito do campo sobre o dopante de menor concentração (original = cte):

- Simulações de Boro no canal nMOS, sem e com efeito de campo elétrico.
- Diferença muito importante para pequenas dimensões!

8.5.3 Leis de Fick com Difusão Dependente de Concentração

• Ex. dif. c/ C_S =cte, 10¹⁸ e 5x10²⁰ cm^{-3.} P/ C<n_i, erfc(x) OK, porém p/ C>>n_i, D maior q^{do} C $\uparrow \Rightarrow$

perfil tipo caixa.

 $D \propto n/n_{\rm i}$

• Dopantes comuns em Si

seguem este comportamento. Portanto, usar:

Experimentalmente, o perfil pode ser modelado com

ou $D \propto (n/n_i)^2$

Baseado em estudo de difusão com 2 isótopos de um elemento, obteve-se os seguintes resultados:

$$D_A^{ef} = D^0 + D^- \left(\frac{n}{n_i}\right) + D^= \left(\frac{n}{n_i}\right)^2$$
$$D_A^{ef} = D^0 + D^+ \left(\frac{p}{n_i}\right) + D^{++} \left(\frac{p}{n_i}\right)^2$$

p/ dopante tipo n

p/ dopante tipo p

 Os diferentes termos D⁰, D⁺, etc, atribuem-se a interações do dopante com DP's com diferentes estados de carga.

• Se intrínseco, $p = n = n_i \implies D_A^* = D^0 + D^- + D^=$

Cada termo D segue a forma Arrhenius:

$$D = D.0 \exp\left(-\frac{D.E}{kT}\right)$$

Ver valores D.0 e D.E na tabela seguinte:

Table 7–5 Concentration-dependent diffusivities of common dopants in single-crystal silicon in cm² sec⁻¹

	S1	В	In	As	Sb	Р
D ⁰ .0	560	0.05	0.6	0.011	0.214	3.85
$D^{o}.E$	4.76	3.5	3.5	3.44	3.65	3.66
$D^{+}.0$		0.95	0.6			
$D^+.E$	filee an ar	3.5	3.5			
D ⁻ .0				31.0	15.0	4.44
$D^{-}.E$		10 In Summer		4.15	4.08	4.0
D=.0						44.2
D".E						4.37

Expressão alternativa: onde: β = D⁻/D⁰; γ = D⁼/D⁰, linear e quadrático respectivam.
Expressão similar para tipo p.

$$D_A^{ef} = D_A^* \left(\frac{1 + \beta \frac{n}{n_i} + \gamma \left(\frac{n}{n_i}\right)^2}{1 + \beta + \gamma} \right)$$

Ex.: Simulação SUPREM-IV de BJT: Base p-epi, 0.1μm, 10¹⁹ cm⁻³ + anneal (1000C, 60min); Emissor: dep. Si-poli n⁺ (As) com difusão (1000C, 30min).

- Gaussiana p/ base e erfc p/ emissor não se aplicam.
- Efeito de campo elétrico e de altas concentrações são necessários para obter o resultado real.
- Necessita-se de simulação numérica.

8.5.4 Segregação

- Dopantes têm diferente solubilidade em 2 materiais. Eles se redistribuem até igualar o potencial químico.
- A razão da sua concentração nos 2 meios = coef. segreg.
- Os seguintes valores são típicos para $k_0 = C_{si}/C_{SiO2}$:
 - 0.3 p/ B
 - 10 p/ As
 - 10 p/ Sb

10 p/ P

Redistribuição de dopantes durante oxidação

local de Si:

8.5.5 Empilhamento de Dopantes em Interface

- Interface SiO₂/Si age como sorvedouro para átomos dopantes (~ 1 monocamada).
- Tornam-se inativos e são dissolvidos em HF diluído.
- Fig.b: após RTA, 32% de As é perdido por empilhamento na interface.
- Perda de dopantes é considerada em SUPREM-IV e outros. Modelos preliminares existem no momento.

8.5.6 Sumário da Difusão Macroscópica

- 1ª lei de Fick é uma lei fundamental da física que se aplica bem aos casos de baixas concentrações, porém não explica vários casos experimentais.
- Foi necessário adicionar:
 - Efeito de campo elétrico
 - Variação de D com o nível de dopagem.
- Para refinar mais os modelos e o entendimento, necessitamos de análise e modelos de difusão a nível de escala atômica.
- Isto permitirá explicar muitos casos de difusão anômala de dopantes em Si.

8.5.7 Base Física para Difusão em Escala Atômica

- DP's (vacâncias e intersticiais) e difusão de dopantes estão intimamente ligados em escala atômica.
- Necessitamos entender comportamento de DP's:
- Difusão assistido por vacâncias: É o mecanismo predominante em metais.
- Em Si: existe tb mecanismo de difusão assistido por intersticiais:

a) kick-out (chuta fora + mobilidade intersticial)
b) Difusão do par Si intersticial e dopante.

8.5.8 Difusão aumentada ou retardada por oxidação.

• Difusão em ambiente inerte versus oxidante: B, P \rightarrow D(O₂) \uparrow Sb \rightarrow D(O₂) \downarrow

 Modelo: oxidação → expansão de volume → stress → emissão de Si intersticial = I → cresce
 SF's e aumenta difusão de B e P

$Oxidação \Rightarrow$ supersaturação de I \Rightarrow sub-saturação de V

- Conclui-se:
 - B e P difundem assistidos por I
 - Sb difunde assistido por V
 (possivelmente devido ao seu grande tamanho).

Supersaturação de I depende de G e R na superfície de oxidação ⇒ C_I depende da taxa de oxidação e de T
 T ↓ ⇒ ΔD ↑
 T ↑ ⇒ ΔD ↓

8.5.9 Difusão de Dopantes Ocorre por Ambos I e V

- Teoria e evidência experimental confirmam que a difusão ocorre pela contribuição de ambos I e V.
- Ex. experimental: difusão de As e Sb (ambos tipo n) na mesma amostra em ambiente inerte ou oxidante ⇒ As: aumento de D e Sb: redução de D.
- Nitretação de Si em NH₃ tem efeito oposto: I ↓, V↑ ⇒ D(B,P)↓, D(Sb)↑, L_{SF}↓

$$D_{A}^{ef} = D_{A}^{*} \left(f_{I} \frac{C_{I}}{C_{I}^{*}} + f_{V} \frac{C_{V}}{C_{V}^{*}} \right)$$

D_A* = difusiv em equilíbrio
f_I + f_V = 1

Por meio de análise de difusões em várias condições, junto com análise de crescimento de SF, é possível estimar: a) $C_I e C_V$, com $C_I C_V = C_I^* C_V^*$, b) $f_I e f_V$.

Table 7–6	Approximate values for f_i and f_y for silicon self-diffusion and for the common dopants in silicon			
	fr	fv		
Silicon	0.6	0.4		
Boron	1.0	0		
Phosphorus	1.0	0		
Arsenic	0.4	0.6		
Antimony	0.02	0.98		

Pelo exposto acima, podemos re-escrever:

$$D_A^{ef} = D_A^0 \exp\left(\frac{-E_A}{kT}\right)$$
$$D_A^{ef} = D_{AI} + D_{AV}$$
$$D_A^{ef} = d_{AI} \left[\frac{C_{AI}}{C_A}\right] + d_{AV} \left[\frac{C_{AV}}{C_A}\right]$$

- onde: $d_{ai} e d_{AV}$ são as difusividades devido aos 2 DP's
- C_{AI}/C_A e C_{AV}/C_A são as frações dos dopantes com difusão via I e V respectivamente.
- Esta é uma descrição mais rigorosa da difusão e veremos como ela afetará as leis de Fick.

8.5.10 Energia de Ativação para Auto-difusão e Difusão de Dopantes

- E_A (dopante) ~ 3 4 eV < E_A (DP's) ~ 4 5 eV !
- Porque? \Rightarrow Pode explicar a difusão de dopantes.
- ∴ A interação do dopante e DP resulta em redução do E_A. Possíveis explicações:
 - Efeito Coulombiano dopante é ionizado e Si não não é suficiente para explicar (todos teriam mesmo E_A)
 - Efeito da relaxação da tensão devido à diferença de tamanho de átomo (B ~ 12%)
 - Troca de carga entre dopante e DP. Aumenta probabilidade de interação.

8.5.11 Interação Dopante-DP

- Ocorre a seguinte reação: A + I ↔ AI
 Similar para A + V ↔ AV
- Estas são as espécies que se difundem. "A" sozinho é imóvel.
- Isto explica, pq c/ oxidação D(B,P) \uparrow , pois I \uparrow e pq com nitretação V $\uparrow \Rightarrow I \downarrow \Rightarrow D(B,P) \downarrow$, (pois I + V $\leftrightarrow Si_S$)
- Uma alta C desloca a equação A + I \leftrightarrow AI para esquerda \Rightarrow aumento de I (ou V) no interior \Rightarrow aumento de D.

8.5.12 Efeitos de Estados de Carga

$$D_A^{ef} = D^0 + D^- \left(\frac{n}{n_i}\right) + D^= \left(\frac{n}{n_i}\right)^2 \quad \text{P/ tipo n}$$
$$D_A^{ef} = D^0 + D^+ \left(\frac{p}{n_i}\right) + D^{++} \left(\frac{p}{n_i}\right)^2 \quad \text{P/ tipo p}$$

- Deve-se ao carregamento de estados de DP's
- Depende da posição do nível de Fermi.

8.6 Limites e Tendência Futuras

- Modelos são adequados para tecnologias atuais: permite estudar e projetar processos/estruturas.
- Limitações para requisitos futuros: junções mais rasas e com alta concentração – ativação metaestável.
- Processos para junções rasas:
 - I/I baixa energia + RTA
 - Difusão de filme dopado (SOG ou CVD)
 - GILD Gas Immersion Laser Doping: ambiente com dopante + fusão superficial por laser.
- Entendimento da interação com DP's em escala atômica, por diversos mecanismos, é fundamental.