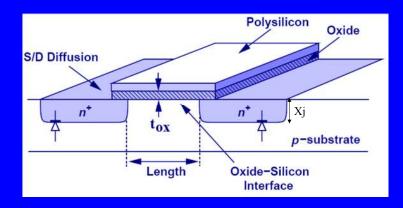
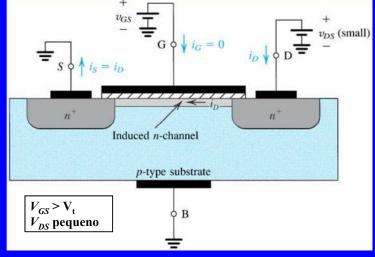
Escalamento e Limites de Dispositivos MOS

Jacobus W. Swart
Leandro T. Manera
CCS e FEEC
UNICAMP


1

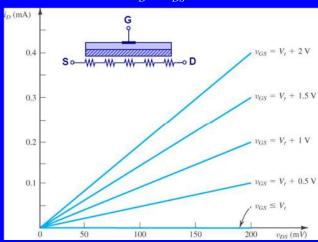
Sumário:

- 1. Introdução
- 2. Leis de escalamento
- 3. Limitações de Transistores Pequenas Dims.
 - 1. Efeitos de canal curto: V_T vs L
 - 2. Efeito de canal estreito: V_T vs W
 - 3. Punchthrough
 - 4. Resistências parasitárias
 - 5. Capacitância de porta
 - 6. Corrente de tunelamento
 - 7. Redução de mobilidade
 - 8. Injeção de portadores quentes
 - 9. Rupturas do transistor
- 4. Efeitos das limitações e "mapa de estrada".
- 5. Limites de Escalamento


2

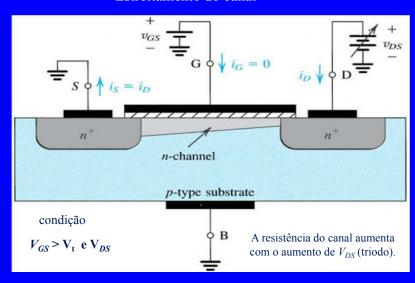
Transistores MOSFET

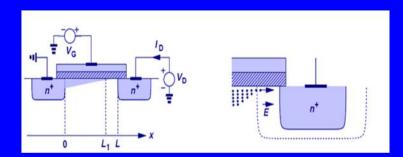
➤ A porta do transistor pode ser formado por polisilício ou outros tipos de materiais condutores (metais).


Transistores MOSFET

 \succ Transistor funciona como um resistor linear cujo valor é controlado por V_{GS}

Transistores MOSFET

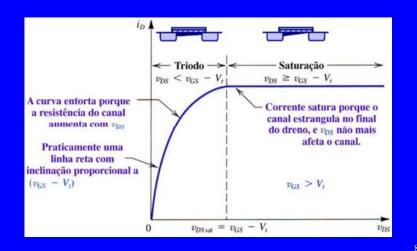

Curva característica i_D x v_{DS} – Transistor nMOS


 \succ Transistor funciona como um resistor linear cujo valor é controlado por $V_{GS.}$

Transistores MOSFET

Estreitamento do canal

Transistores MOSFET

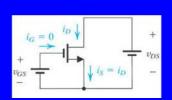


Estrangulamento do canal (pinch off) e modulação comprimento do canal (efeito canal curto)

Saturação

Transistores MOSFET

Curva característica $i_D \times v_{DS}$ – Transistor nMOS

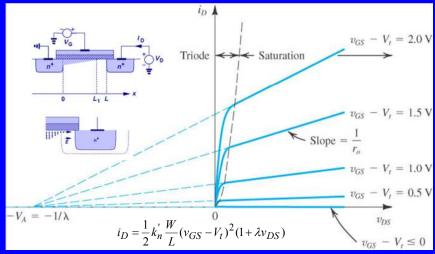


Transistores MOSFET

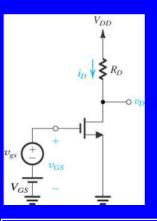
Curva característica $i_D \times V_{DS}$ — Transistor nMOS

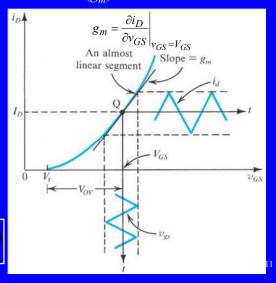
 $v_{DS} \ge v_{GS} - V_t$

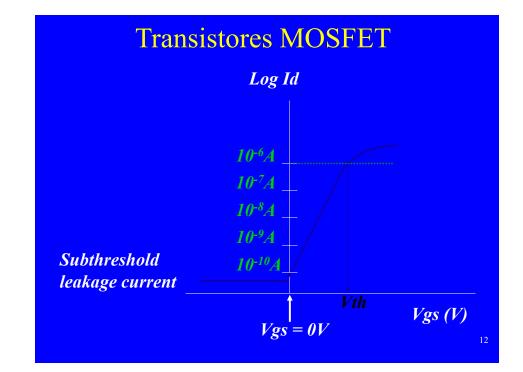
Saturation region


$$= k_n' \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS} \right]^{2}$$

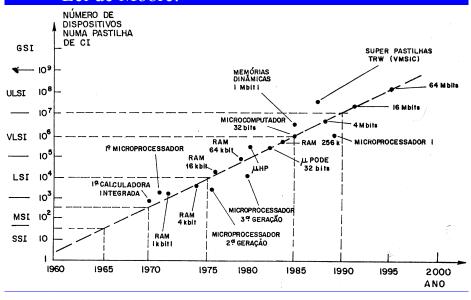
$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)$$


Modulação do comprimento do canal


 \triangleright A corrente no canal aumenta com o aumento de $v_{DS}!!$


Transistores MOSFET

Transcondutância (g_m)



1. Introdução - Escalamento

• Lei de Moore:

1. Introdução – Escalamento – cont.

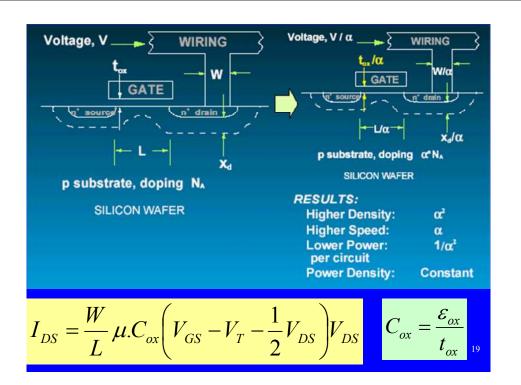
- Quais as forças propulsoras para o escalamento?
 - Maior densidade integração ⇒ economia
 - Menor consumo de energia ⇒ desempenho
 - Maior velocidade de operação ⇒ desempenho
 - Menor no. de chips / sistema ⇒ economia

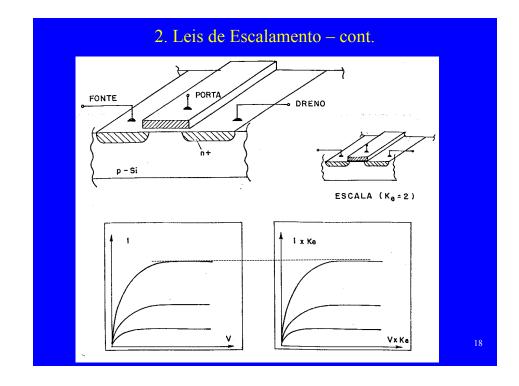
14

1. Introdução – Escalamento – cont.

- Perguntas:
 - Como reduzir (escalar) dimensões?
 - Quais as limitações dos dispositivos escalados?
 - Quais os limites de escalamento?

1. Introdução – Escalamento – cont.

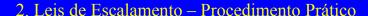

FEATURE	LIMIT	REASON
Oxide Thickness	2.3 nm	Leakage (I _{GATE})
Junction Depth	30 nm	Resistance (R _{SDE})
Channel Doping	V _T =0.25 V	Leakage (I _{OFF})
SDE Under Diffusion	15 nm	Resistance (R _{INV})
Channel Length	0.06μm	Leakage (I _{OFF})
Gate Length	0.10μm	Leakage (I _{OFF})


2. Leis de Escalamento

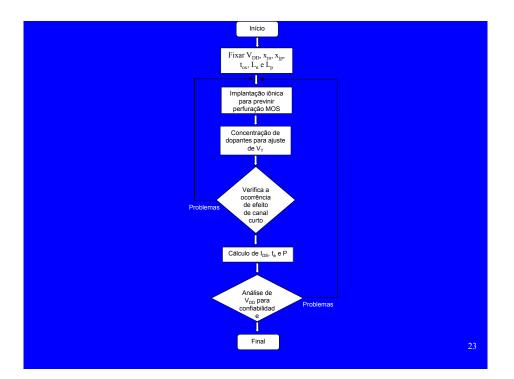
Regra Escalamento por Campo elétrico Constante - EC

Parâmetro	Fator de escala(ke>1)
Dimensões:	1/k _e
L, W, t_{ox}, x_{J}	
N dopagem	k _e
Tensões	1/k _e

Evita-se variações em efeitos que dependam do campo elétrico 17

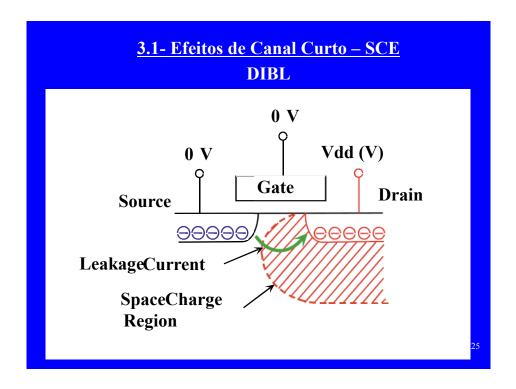


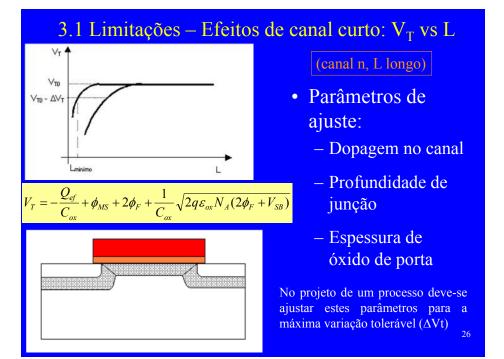
2. Leis de Escalamento – Tipos de Leis

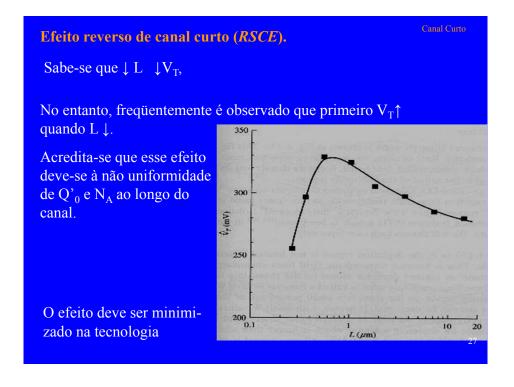

Parâmetro	EC	VC	VQC	Geral
W, L, x_J	1/k	1/k	1/k	$1/k_d$
t_{OX}	1/k	1/√k	1/k	1/k _d
N	k	k	k	k_d^2/k_v
V_{DD}	1/k	1	1/√k	$1/k_{\rm v}$
I_{DS}	1/k	√k	1	k_d/k_v^2
C	1/k	$1/k^{3/2}$	1/k	1/k _d
t_a	1/k	$1/k^2$	$1/k^{3/2}$	k_d/k_v^2
P	1/k ²	√k	1/√k	k_d/k_v^3
P.t _a	$1/k^3$	$1/k^{3/2}$	$1/k^2$	$1/k_d^2k_v$
P/A	1	$k^{5/2}$	$k^{3/2}$	$k_d^{3}/k_v^{3^{20}}$

Três eras: i) tensão constante (70-90), ii) junções abruptas (90-00) e iii) strained Si engineering (00-...) Eras of Transistor Scaling Source/Drai Constant Voltage Scaling Technology Feature Size Abrupt Nominal 100nm Nanotechnology Strained 2010 1970 100 Source: Intel Technology Technology Voltage (V) (MV/cm) .7X Voltage E. Voltage Scaling 0.80 0.35 0.18 0.09 1990 2000 2010 1980 1.2

- Por simulações de:
 - Processos (SUPREM; Athena)
 - Dispositivos (PISCES; Atlas)
- Ajustar os parâmetros para ótimo desempenho, com análise de:
 - Tensão de limiar, V_T
 - Efeito de canal curto (V_T x L e V_{DD})
 - Perfuração MOS (punchthrough)
 - Corrente de corte, I_{off}
 - Tempo de atraso, t_a
 - Potência, P
 - Corrente de porta e substrato p/ confiabilidade

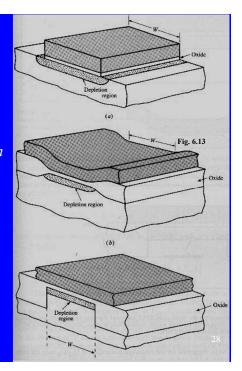



3. Limitações


Limitações de transistores de pequenas dimensões:

- 1. Efeitos de canal curto e canal estreito, $\Delta V_T \times L \in \Delta V_T \times V_{DS}(DIBL)$
- 2. Perfuração MOS
- 3. Resistências parasitárias
- 4. Capacitância de inversão
- 5. Corrente de tunelamento de porta
- 6. Redução de mobilidade
- 7. Injeção de portadores quentes
- 8. Rupturas

24



3.1 – <u>Dispositivos de canal</u> estreito.

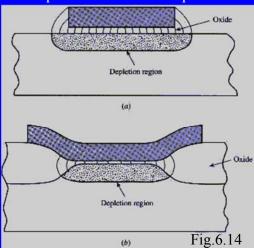
Fig 6.13a – Largura ao longo do canal.

Fig.6.13b – LOCOS (local oxidation of silicon) – formação do "bico de passáro"

Fig 6.13c - STI (*shallow-trench isolation*) usado na tecnologia CMOS 0.35µm e abaixo.

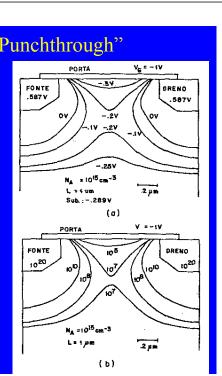
Isolação LOCOS.

A região de depleção não fica limitada pela área do óxido de porta.


Campos laterais originados de cada lado na porta terminam nos átomos ionizados.

Se W é grande, então uma pequena parcela da carga total é afetada pelos campos laterais.

Se W for pequeno, a parcela da carga afetada não é desprezível.


(a)

(b)

Neste caso, para depletar as cargas e formar uma camada de inversão, 20 V_{GS} deve ser maior que previsto p/ $L \uparrow \Rightarrow V_T$ efetivo será \uparrow

3.2 Limitações – "Punchthrough" DRENO SBTV DRENO .587 V -.2V N_ = 10¹⁵ cm-3 2 pm Latum Sub.:-.289 V V = -1V N_A =10¹⁵cm-3

Nota: No caso STI é possível reduzir a dependência com W, pelo arredondamento da quina do Si do STI.

3.2 Perfuração MOS (punchthrough).

O critério mais usados para observar integridade dos efeitos eletrostáticos (canal curto) é S pouco dependente de V_{DS} e com valor próximo ao L longo

 $S = dV_{GS}/d \log I_{DS}$ $S \cong 80 \text{ mV/dec (longo) } e \cong 60 \text{ mV/dec (curto)}$

Para o menor dispositivo aceita-se uma variação de alguns % (~ 5 mV/dec)

A fig. 6.11b apresenta uma boa característica eletrostática.

Isolação LOCOS e STI

O deslocamento da curva para esquerda quando V_{DS} ↑ deve-se ao efeito DIBL.

 $\Delta V_{GS}/\Delta V_{DS} < 100 \text{ mV/V}$ valores típicos aceitáveis.

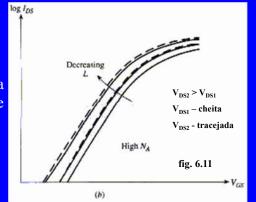
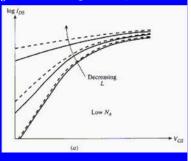
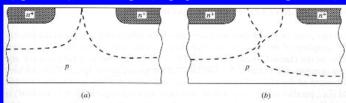
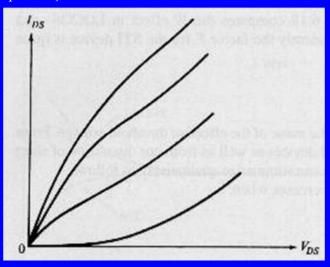



Fig 6.11a, grande dependência de S com V_{DS} – efeito de perfuração MOS

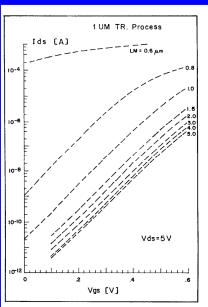

É uma caso severo de diminuição de barreira que causa um fluxo de elétrons da fonte para o dreno. A integridade eletrostática é violada

Também pode ocorrer quando há o encontro das regiões de depleção da fonte e do dreno, na ausência da região de depleção na porta:


- a) perfuração de superfície (dopagem uniforme)

- b) perfuração de corpo (dopagem maior na superfície)

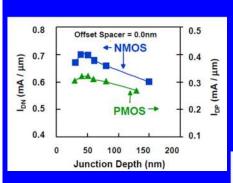
22


Efeitos de perfuração MOS sobre as curvas características:

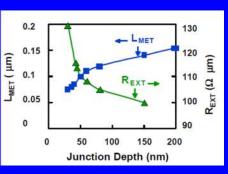
Perfuração MOS deve ser evitado por construção e não necessita ser modelado em modelos compactos SPICE.

34

$\ \ \, \text{``Punchthrough''}-cont.$



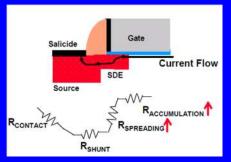
Para observar a ocorrência: Log Id x V_{GS} – não mais apresenta comportamento exponencial com V_{GS} .


- Parâmetros de ajuste:
 - Dopagem no canal, com alta energia para elevar a conc. do corpo, evitar que a depleção do dreno caminhe para o canal
 - Profundidade de junção (LDD ou SDE=Source/drain extention)
 - Espessura de óxido de porta₃₅

3.3 Limitações – Resistências Parasitárias Janela de Contato Porta Extensão de fonte/dreno

3.3 Limitações – Resistências Parasitárias

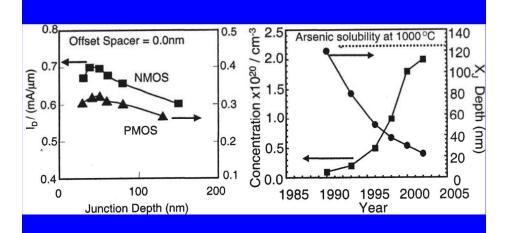

Compromisso entre aumento da corrente de dreno e aumento das resistências parasitárias.


3.3 Limitações – Resistências Parasitárias – cont.

Para diminuir efeitos de canal curto deve-se

diminuir a profundidade de junção.

Dificuldades: $X_J \downarrow \Rightarrow R_d \uparrow$ Área $\downarrow \Rightarrow R_{Co} \uparrow$


30

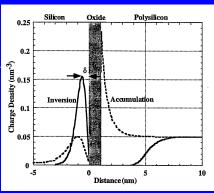
3.3 Limitações – Resistências Parasitárias – cont.

- Dificuldades:
 - $X_J \downarrow \Rightarrow R_d \uparrow$
 - Área \downarrow ⇒ R_{Co} ↑
- Soluções:
 - Siliceto sobre a região de S/D
 - − S/D com alta dopagem, uso de RTP.
 - Perfil abrupto da região LDD: R_{SP} e R_{AC} \downarrow

Recomenda-se que a soma das resistências parasitarias de fonte e dreno não excedam a 10% da resistência intrínseca do canal

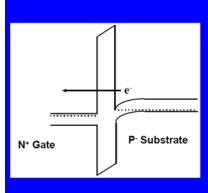
I_{on} vs. x_J para I_{off} fixo (Era junção abrupta)

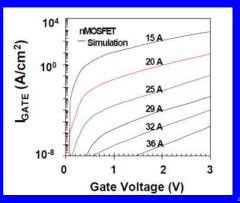
 X_J menor resulta S menor, permite V_T menor, aumenta I_{on}


3.4 Limitações – Capacitância de Porta

- Classicamente: $Q_c = C_{ox}(V_{GS} V_T)$
- • Correções:

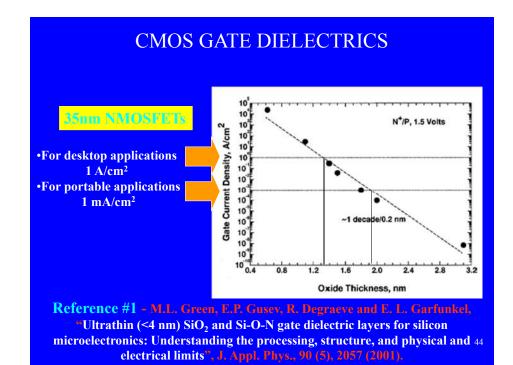
$$\frac{1}{C_{ef}} = \frac{1}{C_{ox}} + \frac{1}{C_{c}} + \frac{1}{C_{poli}}$$

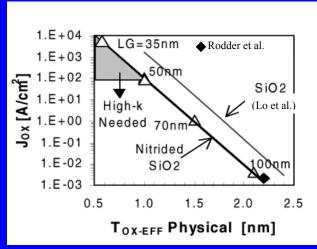

$$C_c = \frac{\mathcal{E}_{Si}}{t_c}$$


$$C_{poli} = rac{\mathcal{E}_{Si}}{t_{depl}}$$

3.5 Limitações – Corrente de tunelamento

O limite da espessura do óxido não está limitado pelo processo de fabricação. Pode –se fabricar SiO₂ < 1,5nm Limitado por corrente de fuga/tunelamento!

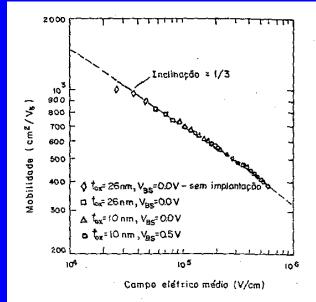


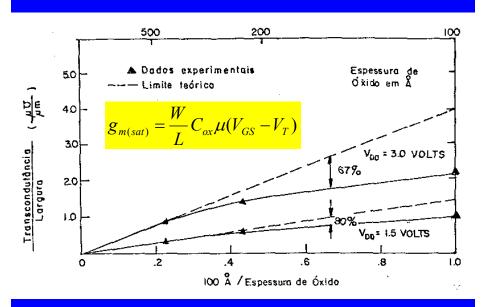

3.5 Limitações – Corrente de tunelamento

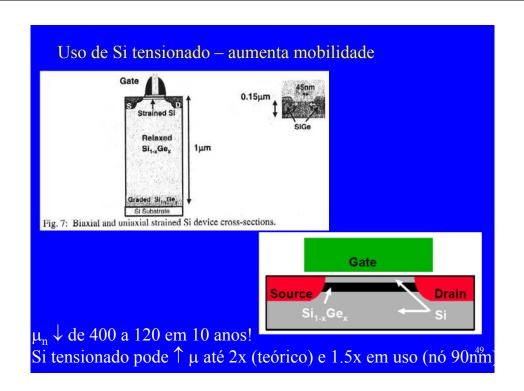
$$J_{tun} = A.\exp(-2\sqrt{\frac{2.m^*.q.\phi_B}{\hbar^2}}.t_{ox})$$

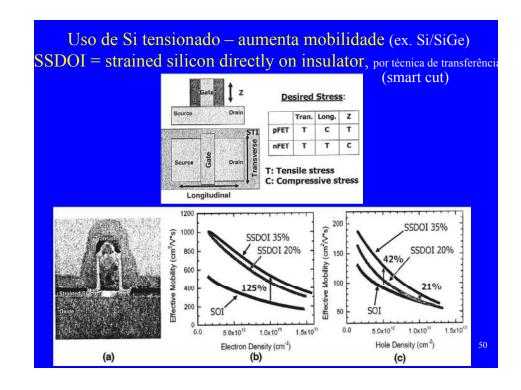
- $I_{\text{tunel}} < 0.01 I_{\text{DS}}$
- $SiO_2 > \sim 1,5 \text{ nm}$
- Solução: usar dielétrico de alta constante dielétrica:
 - Espessura maior para mesma capacitância!
 - Necessário para L < ~ 50 nm.

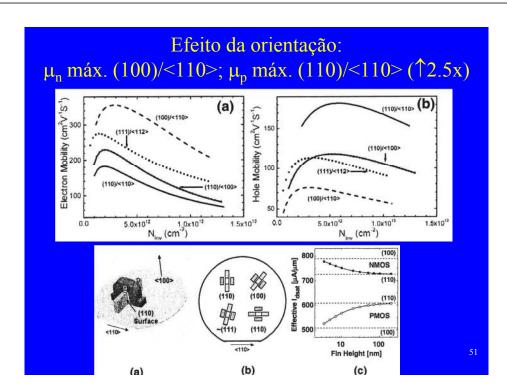
~ 2005: L ~ 50 nm Necessidade de high-k, p/ potência reduzida


T. Ghani et al., Symp. on VLSI, p.174, June, 2000₄₅

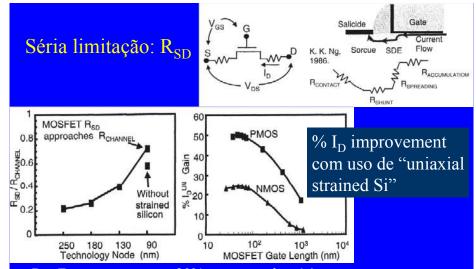

Saturação da velocidade dos portadores $\sim 10^7 \text{cm/s}$. Campo elétrico $2x10^4$ para n e $1x10^5$ para p


40


3.6 Limitações – Redução de mobilidade



3.6 Limitações – Redução de mobilidade – cont.

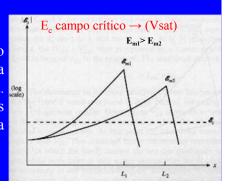


Transistores MOS com Ge (Stanford)

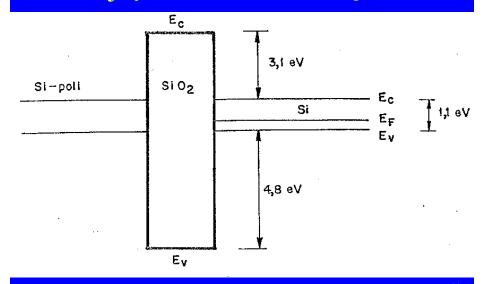
• Mobilidade muito melhor, porém, baixo limite de solubilidade sólida $\sim 10^{19}$ cm⁻³.

- R_{SD}/R_{ch} era menor que 20%, agora tende a 1!
- Ganho pelo strain tende a saturar para L<100nm (nMOS) e L<50nm (pMOS) devido à R_{SD}.
- Prioridade: reduzir R_{SD}; não adianta melhorar a chave MOS (CNT?)

Portadores quentes.


O campo longitudinal aumenta da fonte para o dreno.

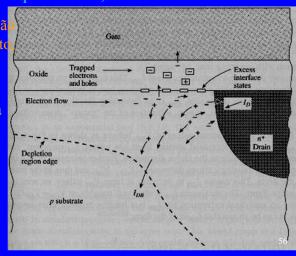
O pico do campo se dá na junção canal-dreno e depende fortemente de $\,L\,e\,V_{DS}.$


Para $L_{(2)}\uparrow$, o campo crítico ~ coincide com o inicio do estrangulamento. Para $L_{(1)}\downarrow$, há uma porção do canal antes do estrangulamento onde a velocidade dos portadores satura.

Em campos $> E_c$:

A velocidade dos portadores não aumenta devido às colisões, porém a energia cinética randômica aumenta. Uma pequena fração de portadores adquirem uma quantidade de energia alta \Rightarrow "portadores quentes"

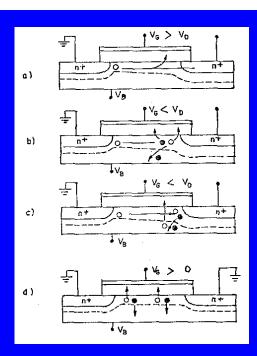
3.7 Injeção de Portadores Quentes


Alguns do elétrons adquirem energia suficiente para produzir ionização por impacto com átomos de silício do cristal, onde são criados novos pares elétron-lacuna \Rightarrow avalanche fraca.

Elétrons gerados são atraídos para o dreno;

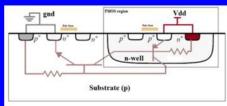
Lacunas geradas sã "puxadas" para o substrato gerando a corrente I_{DB} .

Uma fração dos elétrons podem sobrepor a barreira do SiO₂, serem injetados no óxido e coletados pela porta.


 $\Rightarrow \uparrow N_{it}$ e modifica Q_0 , $\Rightarrow \downarrow$ tempo de vida dos dispositivos e ΔVt

3.7 Injeção de Portadores Quentes – cont.

- Modos principais de injeção de portadores quentes:
 - a) elétrons quentes do canal
 - b) elétrons quentes e lacunas quentes produzidos por avalanche;
 - c) elétrons quentes do substrato, induzidos por ionização secundária;
 - d) elétrons térmicos quentes.


57

-58

3.7 Injeção de Portadores Quentes – cont.

- Efeitos da injeção de portadores quentes:
 - Corrente de porta
 - Corrente de substrato
 - Degradação da mobilidade ou transcondutância
 - Degradação da tensão de limiar
 - Ruptura do transistor
 - Latch-up em CMOS.

3.7 Injeção de Portadores Quentes – cont.

- Dependência com parâmetros:
 - a) polarizações V_G , V_D , V_B ;
 - b) dimensões L, t_{ox} , X_i ;
 - c) dopagem de substrato;
 - d) forma do perfil do dreno próximo ao canal;
 - e) temperatura.
- Soluções:
 - − a) Reduzir tensões (adotado após 1990)
 - b) Alterar dopagem de S/D: LDD ou extensão (usado durante década de 80; em seguida, a extensão foi projetada para desempenho, I_{on}/I_{off}).

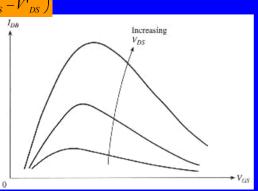
Ĭ

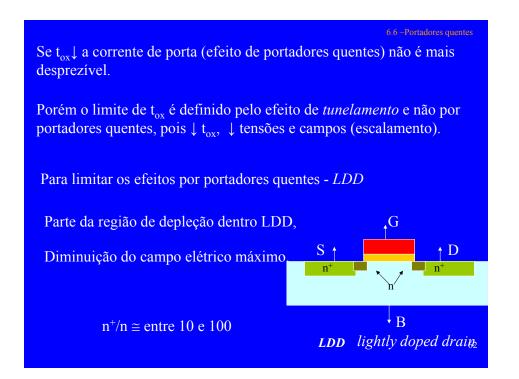
6.6 –Portadores quente

 $I_{DB} \ \alpha \ I_{DS} \qquad I_{DB} \ \acute{e} \ função \ do \ campo, \ ou, \ excesso \ V_{DS} \mbox{-}V'_{DS}$

Para um dado V_{DS} e aumentando V_{GS} , $\uparrow I_{DS}$ e $\uparrow I_{DB}$

aumentando mais V_{GS} , $\uparrow V'_{DS}$ e $(V_{DS}$ - $V'_{DS}) \downarrow \,$ e o campo no dreno \downarrow

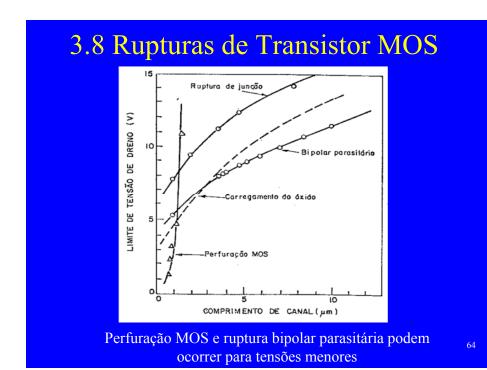

$$|I_{DB}| = |I_{DS}|K_i(V_{DS} - V'_{DS}) \exp\left(\frac{V_i}{V_{DS} - V'_{DS}}\right)$$


K_i de 1 a 3 V_i de 10 a 30V.

 I_{DB} é máx em $V_{GS} \sim V_{DS}/2$

corrente total de dreno,

$$I_{D} = I_{DS} + I_{DB}$$



3.8 Rupturas de Transistor MOS

A - Ruptura do óxido de porta: Emax = $1x10^7$ V/cm | Limite era de ~1 a 1,5x10⁶ V/cm | Atualmente 5x10⁶ V/cm (modelamento do efeito de ruptura)

B - Ruptura bipolar parasitária: Corrente de substrato pode gerar polarização direta na junção fontesubstrato.

C - Ruptura por avalanche de dreno e/ou canal: pode haver ruptura devido á multiplicação de portadores por avalanche.

4. Efeitos das limitações e "mapa de estrada"

- As limitações estudadas:
 - a) afetam o desempenho elétrico dos dispositivos
 - b) determinam as condições limites de operação
 - c) determinam condições de contorno para o projeto da estrutura física dos transistores e do processo de fabricação.

65

ITRS 2001 with 2002 Update

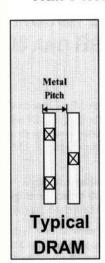
Roadmap CMOS

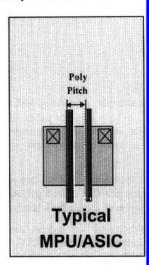
http://www.itrs.net/2001_sia_roadmap/home.htm

Ano	01	02	03	04	05	06	07	10	13	16
P1	130	115	100	90	80	70	65	45	32	22
P2	150	130	107	90	80	70	65	45	32	22
L1	90	75	65	53	45	40	35	25	18	13
L2	65	53	45	37	32	28	25	18	13	9

P1 = DRAM ½ Pitch;

 $P2 = MPU \frac{1}{2}$ Pitch

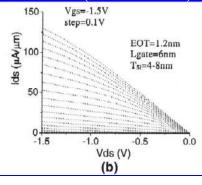

L1 = PMU Printed Gate Lenght;


L2 = PMU Physical Gate Lenght; (all in nm)

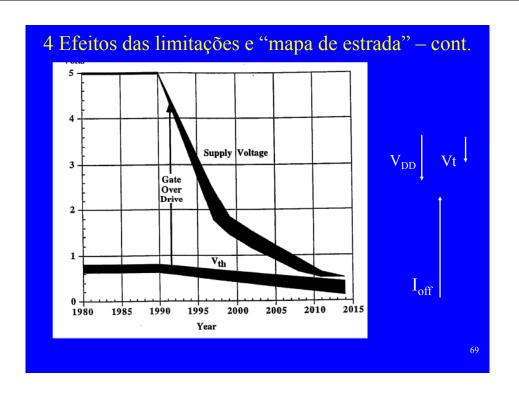
66

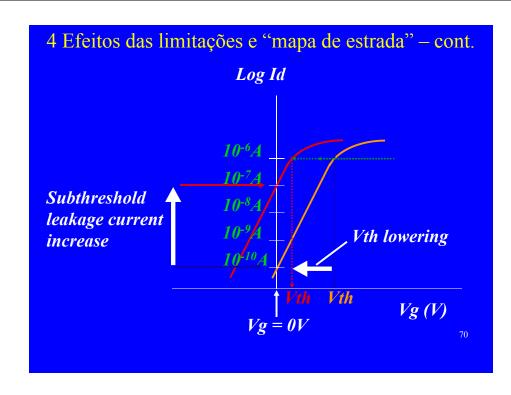
ITRS 2001 with 2002 Update

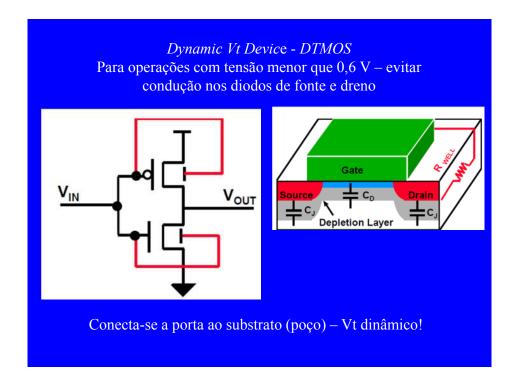

Half Pitch (=Pitch/2) Definition



ITRS2001 – dimensões em nm 13 16 19 22 Ano 04 07 65 32 22 10 90 45 Lito 35 53 25 18 **Printed Gate** 13 6 37 25 18 13 Physical Gate 9

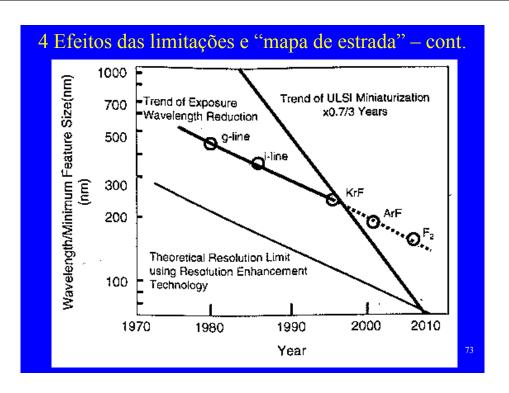

Transistor pMOS com L = 6 nm (IBM - 2004)

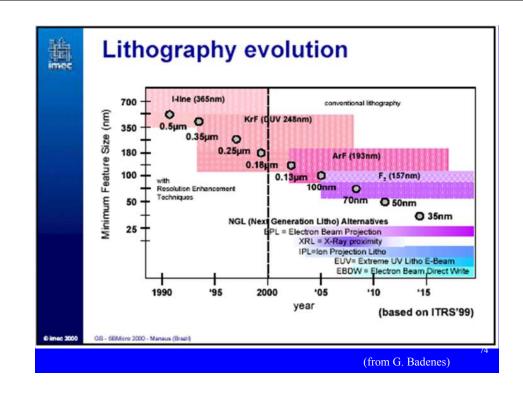


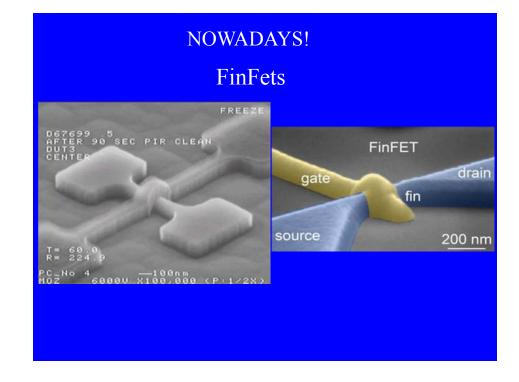


68

7



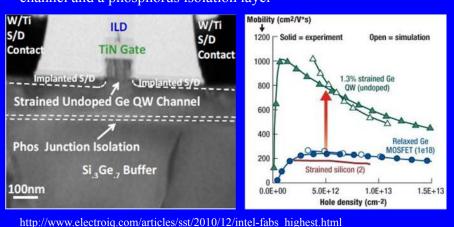



4. Efeitos das limitações e "mapa de estrada" – cont.

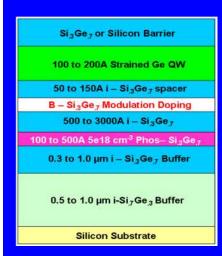
Ano	1997	1999	2002	2005	2008	2011	2014
Dimensão mínima (nm)	250	180	130	100	70	50	35
DRAM (início de vendas)	256M	1G	(3G)	8G	(24G)	64G	(192G)
Área chip DRAM (mm²)	280	400	460	530	630	710	860
Espessura equivalente de	3-5	1.9-2.5	1.5-1.9	1.0-1.5	0.8-1.2	0.6-0.8	0.5-0.6
óxido (nm)							
Res. máx. de material de		60	43	33	23	16	11
porta (μΩ.cm)							
Res máx. de contato		30x10 ⁻⁸	17x10 ⁻⁸	10x10 ⁻⁸	5x10 ⁻⁸	2.5x10 ⁻⁸	1.5x10 ⁻⁸
siliceto/si (Ω.cm²)							
Resistência de folha da		350-	250-	200-	150-	120-	100-
extensão S/D (Ω/□)		800	700	625	525	525	400
X _J da extensão S/D (nm)	50-100	42-70	25-43	20-33	16-26	11-19	8-13
Perfil da extensão S/D		14	8.5	6.5	4.5	3.2	2.2
(nm/dec.)							
V_{DD}	1.8-2.5	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.5

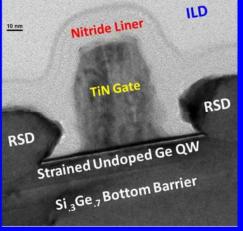
<u>An</u>	**			
	1972	2001	Ratio	Limiting factor
Gate length	6 μm	0.1 μm	1/60	
Gate oxide	100 nm	2 nm	1/50	Gate leakage TDDB
Junction depth	700 nm	35 nm	1/20	Resistance
Supply voltage	5 V	1.2 V	1/4	Vth, Power
Threshold voltag	ge 0.8 V	0.3 V	1/2.6	Subthreshold leakage
Electric field (Vd/tox)	0.5 MVcm ⁻¹	6 MVcm ⁻¹	30	TDDB
				(from H. Iwai) 75

Carbon NanoTube (CNT) FET


NOWADAYS!

Intel announced a record-breaking quantum well field effect transistor (QWFET); a 35nm gate length device capable of 0.28mA/μm drive current and peak transconductance of 1350μS/μm. These QWFETs used InGaAs as the quantum well channel material. High-mobility germanium QWFET that achieves the highest mobility (770 cm²/Vsec) with ultrathin oxide thickness (14.5Å) for low-power CMOS applications.


http://www.electroiq.com/articles/sst/2010/12/intel-fabs highest.html


NOWADAYS!

The transistor uses HfO₂/TiN high-k/metal gate, self-aligned boron implanted source and drains, W/Ti contacts, 1.3% strained Ge QW channel and a phosphorus isolation layer

NOWADAYS!

Limites Teóricos

Limite das flutuações térmicas: $\Delta\epsilon > 4kT$. Qualquer informação deve conter no mínimo 4kT.

$$\Delta V = 4kT/q$$

Sabe-se que o tempo de atraso mínimo :

$$\tau_{\min} = \frac{L_{\min}}{v_{\max}} + \frac{\Delta V / EC}{v_{\max}}$$

Para o silício:

Ec =
$$3x10^5$$
 V/cm³, $v_{max} = 1x107$ cm/s, Lmin = 10 nm (?)
 $\therefore \tau = 3x10^{-14}$ s ou ~ 5 THz